aGI10S

Nagios® Version 2.0
Documentation

Copyright © 1999-2004 Ethan Galstad
www.nagios.orp

Last Updated: 09-02-2004

[[Table of Contenis]

Nagios and the Nagios logo are registered trademarks of Ethan Galstad. All other trademarks, service-
marks, registered trademarks, and registered servicemarks mentioned herein may be the property of
their respective owner(s). The information contained herein is provided AS IS with NO WARRANTY
OF ANY KIND, INCLUDING THE WARRANTY OF DESIGN, MERCHANTABILITY, AND

FITNESS FOR A PARTICULAR PURPOSE.

http://www.nagios.org/
http://www.nagios.org/

a

Version 2.0 Documentation

Table of Contents

10S

About

What is Nagios?

[System requirementb
Licensinﬂ

|Down|oading the latest versioh
[Other monitoring utilities |

Release Notes

[What's new in this versior]

Change log

Support

[Self-service and commercial suppolt

Getting Started

|Advice for beginners

Installing Nagios

[Compiling and installing Nagio$
|Setting up the web interfacg

Configuring Nagios

[Configuration overview

[Main configuration file options|

[Object configuration file optiong

|CGI configuration file options|
[Configuring authorization for the CGIs|

Running Nagios

\VVerifying the configuration

Startin§ Na§i03
Stopping and restarting Nagiok

http://www.nagios.org/
http://www.nagios.org/support/

Nagios Plugins

|Standard pluging
[Writing your own plugins|

Nagios Addons

Daemon and plugin for executing plugins on remote hosts
Daemon and client program for sending passive check results across the network

Theory Of Operation
[Determing status and reachability of network hosts

Network outage
Notifications

Plugin theory|

Service check schedulifg

State types

ime periodg

i

;

Advanced Topics

Event handler

xternal commands

ndirect host and service checKs
assive service checks

olatile services

:

II

[Service and host result freshness chedks
Detection and handlin§ of state flaﬁéinb

ervice check parallelizatio
Notification escalation$
Monitoring service and host cluster

ost and service dependencigs

tate stalking
Performance dat

cheduled host and service downtime
[Using the embedded PerTinterpretdr
Adaptive monitorin
Obiject inheritanc

ime-saving tips for object definition

|

H'i

W

‘HH

Integration With Other Software

NMP Traps
[TCP Wrappers]

i

Miscellaneous

[Securing Nagiop

[Tuning Nagios for maximum performance
|[Using the nagiostats utility

|[Using macros in commands

[Information on the CGls|

[Custom CGI headers and footers

About Nagios®

What Is This?

Nagios® is a system and network monitoring application. It watches hosts and services that you
specify, alerting you when things go bad and when they get better.

Nagios was originally designed to run under Linux, although it should work under most other unices
as well.

Some of the many features of Nagios® include:

Monitoring of network services (SMTP, POP3, HTTP, NNTP, PING, etc.)

Monitoring of host resources (processor load, disk usage, etc.)

Simple plugin design that allows users to easily develop their own service checks

Parallelized service checks

Ability to define network host hierarchy using "parent” hosts, allowing detection of and distinc-

tion between hosts that are down and those that are unreachable

Contact notifications when service or host problems occur and get resolved (via email, pager, or

user-defined method)

e Ability to define event handlers to be run during service or host events for proactive problem
resolution

® Automatic log file rotation

Support for implementing redundant monitoring hosts

e QOptional web interface for viewing current network status, notification and problem history, log

file, etc.

SystemRequirements

The only requirement of running Nagios is a machine running Linux (or UNIX variant) and a C
compiler.You will probably also want to have TCP/IP configured, as most service checks will be
performed over the network.

You arenot requiredto use the CGls included with Nagios. However, if you do decide to use them,
you will need to have the following software installed...

1. A web server (preferradly Apa¢he)
2. Thomas Boutell’s gd Tibrdry version 1.6.3 or higher (required Hy the stajusmap and trends CGls)

Licensing

Nagios® is licensed under the terms of{the GNU General Public Ljcense Version 2 as published by the
[Free Software Foundatipn. This gives you legal permission to copy, distribute and/or modify Nagios
under certain conditions. Read the 'LICENSE’ file in the Nagios distribution or repd the online|version

of the licensge for more details.

Nagios® is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
WARRANTY OF DESIGN, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

http://www.linux.com/
http://www.apache.org/
http://www.boutell.com/gd
http://www.gnu.org/copyleft/gpl.html
http://www.fsf.org/
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

Acknowledganents

Several people have contributed to Nagios by either reporting bugs, suggesting improvements, writing
plugins, etc. A list of some of the many contributors to the development of Nagios can be found at
|http://www.nagios.org.

Downloading The LatestVersion

You can check for new versions of Nagiof at http://www.nagids.org.

Nagios and the Nagios logo are trademarks of Ethan Galstad. All other trademarks, servicemarks,
registered trademarks, and registered servicemarks may be the property of their respective owner(s).

http://www.nagios.org/
http://www.nagios.org/

What's New in Version 2.0

Important: Make sure you read through the documentation (especially thg FAQs) before sending a
guestion to the mailing lists.

Changelog

The change log for Nagios can be found online at http://www.nagios.org/changglog.php or in the
Changelodfile in the root directory of the source code distribution.

Known Issues

There are a few known issues with the Nagios 2.0 code at the moment. Hopefully some of these will
be fixed before 2.0 is released as stable...

1. FreeBSD and threads On FreeBSD there’s a native user-level implementation of threads called
‘pthread’ and there’s also an optional ports collection 'linuxthreads’ that uses kernel hooks. Some
folks from Yahoo! have reported that using the pthread library causes Nagios to pause under
heavy 1/0O load, causing some service check results to be lost. Switching to linuxthreads seems to
help this problem, but not fix it. The lock happens in liblthread’s __pthread_acquire() - it can’t
ever acquire the spinlock. It happens when the main thread forks to execute an active check. On
the second fork to create the grandchild, the grandchild is created by fork, but never returns from
liblthread’s fork wrapper, because it's stuck in __pthread_acquire(). Maybe some FreeBSD users
can help out with this problem.

Changes and NevFeatures

1. Macro Changes-[Macro$ have undergone a major overhaul. You will have to update most of
your command definitions to match the new macros. Most macros are now available as environ-
ment variables. Also, "on-demand" host and service macros have been added. See the documenta-
ftion on macrds for more information.

2. Hostgroup Changes

® Hostgroup escalations removed Hostgroup escalations have been removed. Their func-
tionality can be duplicated by using thestgroup_naméirective i hostgroup definitiops.

e Member directive changes- Hostgroug definitior}s can now contain multiplembers
directives, which should make editing the config files easier when you have a lot of member
hosts. Alternatively, you may use thestgroupgdirective il host definitiofs to specify what
hostgroup(s) a particular host is a member of.

e Contact group changes Thecontact_groupslirective has been moved from hostgroup
definitions td host definitiofis. This was done in order to maintain consistency with the way
service contacts are specified. Make sure to update your config files!

® Authorization changes- Authorization for access to hostgroups in the CGls has been
changed. You must now be authorized for all hosts that are members of the hostgroup in
order to be authorized for the hostgroup.

3. Host Changes

® Host freshness checking Freshness checking has been added for host checks. This is
controlled by th¢ check host freshijess option, along witbhibek freshneddirective in
[host definitions.

® OCHP Command - Host checks can now be obsessed over, just as services can be. The
[OCHP command is run for all hosts that haveaihgess_over_hosfrective enabled in their

http://www.nagios.org/changelog.php

[host definitioh.
4. Host Check Changes

® Regularly scheduled checks You can now schedule regular checks of hosts by using the
check_intervatlirective i host definitioNOTE: Listen up! You should use regularly
scheduled host checks rather sparingly. They are not necessary for normal operation
(on-demand checks are already performed when necessary) and can negatively affect perfor-
if used improperly. You've been warned.

® Passive host checksPassive host checks are now supported if you've enabled them with
thelaccept passive host checks option in the main config file and the
accept_passive _host_checdksective in the host definitiph. Passive host chiecks can make
setting up redunddnt pr distributed monitoring environments eBKEFE: There are some
problems with passive host checks that you should be aware of - read more abput them here.

5. Retention Changes

® Retention of scheduling information- Host and service check scheduling information
(next check times) can now be retained across program restarts using the
luse retained scheduling ihfo directive.

® Smarter retention - Values of various host and service directives that can be retained across
program restarts are now only retained if they are changed during runtimg by an gxternal
[comman}l. This should make things less confusing to people when they try and modify host
and service directive values and then restart Nagios, expecting to see some changes.

® More stuff retained - More information is now retained across program restarts, including
history. Hoorah!

6. Extended Info Changes

® New location- Extended host info and service info definitions are now stored in object
config files along with host definitions, etc. As a result, extended info definitions are now
parsed and validated by the Nagios daemon before startup.

o New directives- Extended host info and service info definitions now have two new direc-
tives: notesandaction_url

7. Embedded Perl Changes

® pl.pllocation- You can now specify the location of the embedded Perl "helper" file (p1.pl)
using th¢ p1 file directive.

8. Notification Changes

e Flapping notifications - Notifications are now sent out wHen flapging starts and stops for
hosts and services. This feature can be controlled usirigogti®n in thenotifica-
tion_optionsfor|contact, hodts and services.

® Better logic - Natification logic has been improved a bit. This should prevent recovery noti-
fications getting sent out when no problem notification was sent out to begin with.

® Service notifications- Before service notifications are sent out, notificdtion dependencies
for the host are now checked. If host notifications are not deemed to be viable, notifications
for the service will not be sent out either.

® Escalation options- Time period and state options have been added fo hgst and|service
escalations. This gives you more control in determining when escalations can be used. More
information on escalations can be fo ere.

9. Service Groups Added-[Service groups have now been added. They allow you to group services
together for display purposes in the CGls[and can be refefenced in service dependency and
service escalation definitions to make configuration a bit easier.

10. Triggered Downtime Added- Support for what's called "triggered" downtime has been added
for host and service downtime. Triggered downtime allows you to define downtime that should
start at the same time another downtime starts (very useful for scheduling downtime for child

11.

12.

13.

14.

15.

16.

hosts when the parent host is scheduled for flexible downtime). More information on triggered
downtime can be fourid hére.
New Stats Utility - A new utility called 'nagiostats’ is now included in the Nagios distribution.
Its a command-line utility that allows you to view current statistics for a running Nagios process.
It can also produce data compatible with MRTG, so you can graph statistical information. More
information on how to use the utility can be fo ere.
Adaptive Monitoring - You can now change certain attributes relating to host and service checks
(check command, check interval, max check attempts etc.) during runtime by submitting the
appropriate external commands. This kind of adaptive monitoring will probably not be of much
use to the majority of users out there, but it does provide a way for doing some neat stuff. More
information on adaptive monitoring can be fo ere.
Performance Data Changes The methods for processing performance data have changed
slightly. You can now process performance data by executing external commands and/or writing
to files without recompiling Nagios. Read the documentatign on performange data for more infor-
mation.
Native DB Support Dropped- Native support for storing various types of data (status, retention,
comment, downtime, etc.) in MySQL and PostgreSQL has been dropped. Stop whining. | expect
someone will develop an alternative using the new event broker sometime in the near future.
Besides, DB support was not well implemented and dropping native DB support will make things
easier for newbies to understand (one less thing to figure out).
Event Broker API - An API has been created to allow individual developers to create addons
that integrate with the core Nagios daemon. Documentation on the event broker API will be
created as the 2.x code matures and will be available on the Nagios website.
Misc Changes

® All commands can contain arguments All command types (host checks, notifications,

performance data processors, event handlers, etc.) can contain arguments (seperated from the

command name blycharacters). Arguments are substituted in the command line using
$ARGx[macrob.

® Config directory recursion - Nagios now recursively processes all config files found in
subdirectories of the directories specified by the cfg dir dirgctive.

e Old config file support dropped - Support for older (non-template) style object and
extended info config files has been dropped.

® [aster searches Objects are now stored in a chained hash in order to speed searches. This
should greatly improve the performance of the CGls.

® \Worker threads - A few worker threads have been added in order to artificially buffer data
for thel external command fjle and the internal pipe used to process service check results.
This should substantially increase performance in larger setups.

® Logging changes Initial host and service states are now logged a bit differently. Also, the
initial states of all hosts and services are logged immediately after all Tog rdtations. This
should help with all those "undetermined time" problems in the availability and trends CGls.

® Cached object config file- An[object cache file is now created by Nagios at startup. It
should help speed up the CGls a bit and allow you to edit you object config files while
Nagios is running without affecting the CGI output.

e Initial check limits - You can now specify timeframes in which the initial checks of all
hosts and services should be performed after Nagios start. These timeframes are controlled
by thg max_host check spread pnd max_service check |spread variables.

e "Sticky" acknowledgements - You can now designate host and service acknowledgements
as being "sticky" or not. Sticky acknowledgements suppress notifications until a host or
service fully recovers to an UP or OK state. Non-sticky acknowledgements only suppress

notifications until a host or service changes state.

Changed in checking clusters The way you monitor service and host "clusters” has now
changed and is more reliable than before. This is due to the incorporation of on-demand
macros and a new plugin (check_cluster2). Read more about checking Eluslers here.
Regular expression matching Regular expression matching of various object directives

can be enabled using the use regexp matching and use true regexp matching variables.
Information on how and where regular expression matching can be used can be found in the
template tips and tricks documentation.

10

Advice for Beginners

Congrats on choosing to try Nagios! Nagios is quite powerful and flexible, but unfortunately its not
very friendly to newbies. Why? Because it takes a lot of work to get it installed and configured prop-
erly. That being said, if you stick with it and manage to get it up and running, you'll never want to be
without it. :-) Here are some very important things to keep in mind for those of you who are first-time
users of Nagios:

1. Relax - its going to take some timeDon’t expect to be able to compile Nagios and start it up
right off the bat. Its not that easy. In fact, its pretty difficult. If you don’t want to spend time
learning how things work and getting things running smoothly, don’t bother using this software.

Instead, pay someone to monitor your network for you or hire someone to install Nagios for you.

-)

2. Read the documentationNagios is difficult enough to configure when you've got a good grasp
of what's going on, and nearly impossible if you don’t. Do yourself a favor and read before
blindly attempting to install and run Nagios. If you're the type who doesn’t want to take the time
to read the documentation, you’ll probably find that others won't find the time to help you out
when you have problems. RTFM.

3. Use the sample config filesSample configuration files are provided with Nagios. Look at them,
modify them for your particular setup and test them! The sample files are just that - samples.
There’s a very good chance that they won't work for you without modifications. Sample config
files can be found in theample-configbéubdirectory of the Nagios distribution.

4. Seek the help of otherslf you've read the documentation, reviewed the sample config files, and
are still having problems, try sendinglescriptiveemail message describing your problems to
thenagios-usersnailing list. Due to the amount of work that | have to do for this project, | am
unable to answer most of the questions that get sent directly to me, so your best source of help is
going to be the mailing list. If you've done some background reading and you provide a good
problem description, odds are that someone will give you some pointers on getting things
working properly.

11

Installing Nagios

Important: Installing and configuring Nagios is rather involved. You can’t just compile the binaries,
run the program and sit back. There’s a lot to setup before you can actually start monitoring anything.
Relax, take your time and read all the documentation - you’re going to need it. Okay, let’s get started...

BecomeRoot

You'll need to have root access to install Nagios as described in this documentation, as you'll be creat-
ing users and group, modifying your web server config files, etc. Either login as root before you begin
or use thesucommand to change to the root user from another account.

Getting The LatestVersion

You can download the latest version of Nagios from http://www.nagios.org/doywnload.

Unpacking The Distri bution

To unpack the Nagios distribution, use the following command:
tar xzf nagiosversion.tar.gz

When you have finished executing these commands, you shouldrfagiasversion directory that
has been created in your current directory. Inside that directory you will find all the files that compro-
mise the core Nagios distribution.

Create NagiosUser/Group

You're probably going to want to run Nagios under a normal user account, so add a new user (and
group) to your system with the following command (this will vary depending on what OS you're
running):

adduser nagios

Create Installation Directory

Create the base directory where you would like to install Nagios as follows...
mkdir /usr/local/nagios

Change the owner of the base installtion directory to be the Nagios user and group you added earlier as
follows:

chown nagios.nagios /usr/local/nagios

Identify Web ServerUser

You're probably going to want to issue external commands (like acknowledgements and scheduled
downtime) from the web interface. To do so, you need to identify the user your web server runs as
(typically apache although this may differ on your system). This setting is found in your web server
configuration file. The following command can be used to quickly determine what user Apache is
running as (paths may differ on your system):

12

http://www.nagios.org/download

grep "“User" /etc/httpd/conf/httpd.conf

Add Command File Group

Next we're going to create a hew group whose members include the user your web server is running as
and the user Nagios is running as. Let’s say we call this new gragprhd (you can name it differ-

ently if you wish). On RedHat Linux you can use the following command to add a new group (other
systems may differ):

{usr/shin/groupadd nagcmd

Next, add the users that your web server and Nagios run as to the newly created group with the follow-
ing commands (I'll assumapacheandnagiosare the respective users):

lusr/sbin/usermod -G nagcmd apache
lusr/sbin/usermod -G nagcmd nagios

Run the Configure Script

Run the configure script to initialize variables and create a Makefile as follows...(the last two options:
--with-commandxxx are optional, but needed if you want to igsue external commands)

Jconfigure --prefix=prefix --with-cgiurl=cgiurl --with-htmurl= htmurl
--with-nagios-user=someuser --with-nagios-group=somegroup --with-command-group=cmdgroup

o Replaceprefix with the installation directory that you created in the step above (default is
{usr/local/nagio$

e Replacecgiurl with the actual url you will be using to accesgthe €Gls (default is
/nagios/cgi-bin. Do NOT append a slash at the end of the url.

® Replacentmurlwith the actual url you will be using to access the HTML for the main interface
and documentation (default/isagios)

® Replacesomeusewith the name of a user on your system that will be used for setting permis-
sions on the installed files (defaultriagio9

® Replacesomegroupvith the name of a group on your system that will be used for setting permis-
sions on the installed files (defaultriagio9

® Replacecmdgroupwith the name of the group running the web server (defandtgog

Compile Binaries

Compile Nagios and the CGls with the following command:
make all

Installing The Binaries And HTML Files

Install the binaries and HTML files (documentation and main web page) with the following command:
make install

Installing An Init_Script

13

If you wish, you can also install the sample init scripfeto/rc.d/init.d/nagiosvith the following
command:

make install-init

You may have to edit the init script to make sense with your particular OS and Nagios installation by
editing paths, etc.

Directory Structure And File Locations

Change to the root of your Nagios installation directory with the following command...
cd /usr/local/nagios

You should see five different subdirectories. A brief description of what each directory contains is
given in the table below.

Sub-Directory | Contents

bin/ Nagios core program

etc/ [Main|,[resourdd, objdct, ahd GGl configuration files should be puf here
sbin/ CGls

share/ HTML files (for web interface and online documentation)

var/ Empty directory for thg log fil¢, status file, retentionl|file, etc.
var/archives | Empty directory for thg archived Idgs

var/rw Empty directory for thg external command|file

Installing The Plugins

In order for Nagios to be of any use to you, you're going to have to download and inst4ll som¢ plugins.
Plugins are usually installed in thibexec/directory of your Nagios installation (i.e.
/usr/local/nagios/libexéc Plugins are scripts or binaries which perform all the service and host checks
that constitute monitoring. You can grab the latest release of the plugins fiom the Nagios ddwnloads
or directly from tHe SourceForge project page.

Setup The Weblnter face

You're probably going to want to use the web interface, so you'll also have to read the instructions on
[setting up the web Interfdce and configuring web authentication, etc. next.

Configuring Nagios

So now you have things compiled and installed, but you still haven’t configured Nagios or defined
objects (hosts, services, etc.) that should be monitored. Information on configuring Nagios and defin-
ing objects can be foufd hkre. There’s a lot to configure, but don't let it discourage you - its well worth
it.

14

http://www.nagios.org/download
http://www.nagios.org/download
http://sourceforge.net/projects/nagiosplug/

15

Setting Up The Web Interface

Notes

In these instructions | will assume that you are running the Apache web server on your machine. If you
are using some other web server, you'll have to make changes where appropriate. | am also assuming
that you used thiisr/local/nagiosas the installation prefix.

SampleConfiguration

A sample Apache config file snippet is created when you run the configure script - you can find the
sample config file (namelkttpd.conf in thesample-configéubdirectory of the Nagios distribution.

You will need to add the contents of this file to your Apache configuration files before you can access
the Nagios web interface. The instruction found below detail how to manually add the appropriate
configuration entries to Apache.

Configure Script Alias For The CGls

First you'll need to create an alias for the CGls. The default installation expects to find them accessible
at http://yourmachine/nagios/cgi-bin/, although this can be changed using-tath-cgiurl option in

the configure script. Anyway, add something like the following to your web server configuration file

(i.e. httpd.conf) (changing it to match any directory differences on your system)...

ScriptAlias /nagios/cgi-bin /usr/local/nagios/sbin
<Directory "/usr/local/nagi os/shin">

Al | owOverri de Aut hConfig

Options ExecCd

Order al |l ow, deny

Al'l ow from al |
</Directory>

Important! The Script-Alias line above must come before the Alias line below. Otherwise Apache
will parse the lines differently.

Important! If you are installing Nagios on a multi-user system, you may waiit use CGIWrap to
provide additional security between the CGls and the external command file. If you decide to use
CGIWrap, the ScriptAlias you'll end up using will most likely be different from that mentioned above.
More information on doing this can be fo ere.

Configure Alias For The HTML Files

Next you'll need to make the HTML files accessible via the web server. Add the following entries to
your web server configuration file (i.ettpd.conf):

Al'ias /nagios /usr/local/nagios/share
<Directory "/usr/local/nagi os/ share">
Opti ons None
Al'l owOverride AuthConfig
Order all ow, deny
Al'low from all
</Directory>

16

http://www.apache.org/
http://cgiwrap.unixtools.org/

This will allow you to use an URL likkttp://yourmachine/nagios/to view the HTML web interface
and documentation. The alias should be the same value that you entered-fuithibetmurl argu-
ment to the configure script (default/igagios).

Important! The Alias directive you just added for the HTML files must cafter the ScriptAlias
directive for the CGls. If it doesn'’t, you'll get a 404 error when attempting to access the CGls.

Restart The WebServer

Once you've finished editing the Apache configuration file, you'll need to restart the web server with a
command like this...

letc/rc.d/init.d/httpd restart

Verify Your Changes

Don't forget to check and see if the changes you made to Apache work. You should be able to point
your web browser dittp://yourmachine/nagios/and get the web interface for Nagios. The CGls may
not display any information, but this will be remedied once you configure everything and start Nagios.

Configuring Web Authentication

Once you have configured the web interface properly, you'll need to enable web server authentication
for accessing the CGls and configure user authorization information. Details on doing this can be

found[herk.

17

Configuring Nagios

Configuration Overview

There are several different configuration files that you're going to need to create or edit before you
start monitoring anything. They are described below...

Main Configuration File

The main configuration file (usuallasr/local/nagios/etc/nagios.gfgontains a number of directives
that affect how Nagios operates. This config file is read by both the Nagios process and the CGls. This
is the first configuration file you're going to want to create or edit.

Documentation for the main configuration file can be fdund] here.

A sample main configuration file is generated automatically when you ruwotifigure script before
compiling the binaries. Look for it either in the distribution directory or the etc/ subdirectory of your
installation. When yolu insthll the sample config files usingriage install-config command, a

sample main configuration file will be placed into your settings directory (usually
lusr/local/nagios/etc). The default name of the main configuration filegms.cfg

ResourceFile(s)

Resource files can be used to store user-ddfined macros. Resource files can also contain other informa-
tion (like database connection settings), although this will depend on how you've compiled Nagios.

The main point of having resource files is to use them to store sensitive configuration information and
not make them available to the CGls.

You can specify one or more optional resource files by using the resougce_file directiie in the main

|configuration filg.

Object Definition Files

Object definition files are used to define hosts, services, hostgroups, contacts, contactgroups,
commands, etc. This is where you define what things you want monitor and how you want to monitor
them.

Documentation for the object definition files can be fdund]here.

CGlI Configuration File

The CGI configuration file (usualljusr/local/nagios/etc/cgi.clgcontains a number of directives that
affect the operation of tfie CGls.

Documentation for the CGI configuration file can be found]here.

A sample CGI configuration file is generated automatically when you rusotifegure script before
compiling the binaries. When ypu insfall the sample config files usingéke install-config

command, the CGI configuration file will be placed in the same directory as the main and host config
files (usually /usr/local/nagios/etc). The default name of the CGI configuration didg ¢g.

18

19

Main Configuration File Options

Notes
When creating and/or editing configuration files, keep the following in mind:

1. Lines that start with a '#' character are taken to be comments and are not processed
2. Variables names must begin at the start of the line - no white space is allowed before the name
3. Variable names are case-sensitive

SampleConfiguration

A sample main configuration file is created in the base directory of the Nagios distribution when you
run the configure script. The default name of the main configuration filegi®s.cfg- its usually
placed in theetc/ subdirectory of you Nagios installation (i/esr/local/nagios/etg/

[Object configuration file
[Object configuration directory

Resource filp
emp fil

Status filé

[Aggregated status updates option

|[Aggregated status data update intgrval
agios user

Nagios group

[Notifications optioh

[Service check execution optlon

—[Z][O]
t=y
®
o
—
o

D g’
o
=
o
=
]

i

Comment filg

Downtime filg

Lock file

[State retention optipn

[State retention file

|[Automatic state retention update intefval
|[Use retained program state option

[Notification logging optioh

20

[Service check retry logging option

[Host retry logging optidn

[Event handler logging optipn

[Initial state logging optidn

[External command logging option

|Passive check logging optjon

|Global host event handler

|Global service event handler

[Inter-check sleep time

[Service inter-check delay method

[Maximum service check spraad

[Service interleave facior

[Maximum concurrent service chekks

[Service reaper frequency

[Host inter-check delay method

[Maximum host check sprdad

[Timing interval length

|[Auto-rescheduling optign

|[Auto-rescheduling intervial

|[Auto-rescheduling window

|[Agressive host checking option

|[Flap detection option

|[Low service flap threshdld

[High service flap threshdld

|[Low host flap threshold

[High host flap thresho]d

[Soft service dependencies opfion

[Service check timedut

[Host check timeo{it

|[Event handler timeout

[Notification timeout

[Obsessive compulsive service processor tinjeout
[Obsessive compulsive host processor tinjeout
|[Performance data processor command tinjeout
|[Obsess over services opiion

|[Obsessive compulsive service processor command
|[Obsess over hosts optjon

[Obsessive compulsive host processor command
|Performance data processing ogtion

|[Host performance data processing command
[Service performance data processing comimand
[Host performance data file

[Service performance data file

[Host performance data file template

[Service performance data file template

[Host performance data file mgde

[Service performance data file mpde

|[Host performance data file processing intgrval
[Service performance data file processing int¢rval
[Host performance data file processing command

21

|Service performance data file processing cominand
|Orphaned service check optjion

|Service freshness checking option
|Service freshness check intetval

|[Host freshness checking option

|[Host freshness check interval

[Date formdt

[lllegal object name charactgrs

[lllegal macro output characters

[Regular expression matching option
[True regular expression matching option
[Administrator email address
[Administrator pagér

Log File

Format: log_file=<file_name>

Example: log_file=/usr/local/nagios/var/nagios.log

This variable specifies where Nagios should create its main log file. This should be the first variable
that you define in your configuration file, as Nagios will try to write errors that it finds in the rest of
your configuration data to this file. If you hdve Tog rotdtion enabled, this file will automatically be

rotated every hour, day, week, or month.

Object Configuration File

Format: cfg_file=<file_name>

cfg_file=/usr/local/nagios/etc/hosts.cfg
Example: cfg_file=/usr/local/nagios/etc/services.cfg

cfg_file=/usr/local/nagios/etc/commands.cfg

This directive is used to specify [an object configuratiof file containing object definitions that Nagios

should use for monitoring. Object configuration files contain definitions for hosts, host groups,
contacts, contact groups, services, commands, etc. You can seperate your configuration information
into several files and specify multipdfy_file= statements to have each of them processed.

Object Configuration Directory

Format: cfg_dir=<directory _name>

cfg_dir=/usr/local/nagios/etc/commands
Example: cfg_dir=/usr/local/nagios/etc/services
cfg_dir=/usr/local/nagios/etc/hosts

22

This directive is used to specify a directory which confains object configuratign files that Nagios
should use for monitoring. All files in the directory withcég extension are processed as object

config files. Additionally, Nagios will recursively process all config files in subdirectories of the direc-
tory you specify here. You can seperate your configuration files into different directories and specify
multiple cfg_dir= statements to have all config files in each directory processed.

Object Cache File

Format: object_cache_file=<file_name>

Example: object cache_file file=/usr/local/nagios/var/objects.cache

This directive is used to specify a file in which a cached copy of object defipitions should be stored.
The cache file is (re)created every time Nagios is (re)started and is used by the CGils. It is intended to
speed up config file caching in the CGls and allow you to edit the qource object corfig files while
Nagios is running without affecting the output displayed in the CGIs.

Resource File

Format: resource_file=<file_name>

Example: resource_file=/usr/local/nagios/etc/resource.cfg

This is used to specify an optional resource file that can contain UERn$ macro definitions.

$USERNS$ macros are useful for storing usernames, passwords, and items commonly used in command
definitions (like directory paths). The CGls wilbt attempt to read resource files, so you can set

restrictive permissions (600 or 660) on them to protect sensitive information. You can include multiple
resource files by adding multiple resource_file statements to the main config file - Nagios will process
them all. See the sample resource.cfg file in the base of the Nagios directory for an example of how to
define SUSERN$ macros.

Temp File

Format: temp_file=<file_name>

Example: temp_file=/usr/local/nagios/var/nagios.tmp

This is a temporary file that Nagios periodically creates to use when updating comment data, status
data, etc. The file is deleted when it is no longer needed.

Status File

Format: status_file=<file_name>

Example: status_file=/usr/local/nagios/var/status.dat

23

This is the file that Nagios uses to store the current status of all monitored services. The status of all
hosts associated with the service you monitor are also recorded here. This file is used by the CGls so
that current monitoring status can be reported via a web interface. The CGls must have read access to
this file in order to function properly. This file is deleted every time Nagios stops and recreated when

it starts.

Aggregated Status Updates Option

Format: aggregate_status_updates=<0/1>

Example: aggregate_ status_updates=1

This option determines whether or not Nagios will aggregate updates of host, service, and program
status data. If you do not enable this option, status data is updated every time a host or service checks
occurs. This can result in high CPU loads and file I/O if you are monitoring a lot of services. If you

want Nagios to only update status data (irff the statlis file) every few seconds (as determined by the
[status_update_interyal option), enable this option. If you want immediate updates, disable it. | would
highly recommend using aggregated updates (even at short intervals) unless you have good reason not
to. Values are as follows:

e (0 = Disable aggregated updates
e 1 =Enabled aggregated updates (default)

Aggregated Status Update Interval

Format: status_update_interval=<seconds>
Example: status update_interval=15
This setting determines how often (in seconds) that Nagios will update status dafa in the $tatus file.

The minimum update interval is five seconds. If you have disabled aggregated status updates (with the
[aggregate status updates option), this option has no effect.

Nagios User

Format: nagios_user=<username/UID>

Example: nagios_user=nagios

This is used to set the effective user that the Nagios process should run as. After initial program startup
and before starting to monitor anything, Nagios will drop its effective privileges and run as this user.
You may specify either a username or a UID.

Nagios Group

24

Format: nagios_group=<groupname/GID>

Example: nagios_group=nagios

This is used to set the effective group that the Nagios process should run as. After initial program
startup and before starting to monitor anything, Nagios will drop its effective privileges and run as this
group. You may specify either a groupname or a GID.

Notifications Option

Format: enable_notifications=<0/1>

Example: enable notifications=1

This option determines whether or not Nagios will send out notifichtions when it initially (re)starts. If
this option is disabled, Nagios will not send out notifications for any host or service. Note: If you have
[state retentidn enabled, Nagios will ignore this setting when it (re)starts and use the last known setting
for this option (as stored in the state retention filejessyou disable thg use retained program |state
option. If you want to change this option when state retention is active (and the

[use retained program_sfate is enabled), you'll have to use the appfopriate external fommand or
change it via the web interface. Values are as follows:

® (0 = Disable notifications
e 1 = Enable notifications (default)

Service Check Execution Option

Format: execute_service_checks=<0/1>

Example: execute_service_checks=1

This option determines whether or not Nagios will execute service checks when it initially (re)starts. If
this option is disabled, Nagios will not actively execute any service checks and will remain in a sort of
"sleep” mode (it can still accept passive checks unless ylou've disabléd them). This option is most
often used when configuring backup monitoring servers, as described in the documenfation pn redun-
[dancy, or when setting ug a distribdted monitoring environment. Note: If yo{i have state fetention
enabled, Nagios will ignore this setting when it (re)starts and use the last known setting for this option
(as stored in the state retention|fikeh)essyou disable the use retained program |state option. If you
want to change this option when state retention is active (and the use retained_program_state is
enabled), you'll have to use the appropijate external comjmand or change it via the web interface.
Values are as follows:

® (0 = Don’t execute service checks
® 1 = Execute service checks (default)

Passive Service Check Acceptance Option

25

Format: accept_passive_service_checks=<0/1>

Example: accept_passive_service_checks=1

This option determines whether or not Nagios will accept passive service|checks when it initially
(re)starts. If this option is disabled, Nagios will not accept any passive service checks. Note: If you

havd state retentibn enabled, Nagios will ignore this setting when it (re)starts and use the last known
setting for this option (as stored in fhe state retentign €ildgssyou disable the

[use retained program_sfate option. If you want to change this option when state retention is active
(and the use retained program_state is enabled), you'll have to use the appropriate external command
or change it via the web interface. Values are as follows:

® (0 =Don’t accept passive service checks
® 1 = Accept passive service checks (default)

Host Check Execution Option

Format: execute_host_checks=<0/1>

Example: execute host checks=1

This option determines whether or not Nagios will execute on-demand and regularly scheduled host
checks when it initially (re)starts. If this option is disabled, Nagios will not actively execute any host
checks, although it can still accgpt passive host checks unless you’ve disabled them). This option is
most often used when configuring backup monitoring servers, as described in the documentation on
[redundandy, or when setting up _a distriblited monitoring environment. Note: If you have state Jetention
enabled, Nagios will ignore this setting when it (re)starts and use the last known setting for this option
(as stored in the state retention|fikeh)essyou disable the use retained program |state option. If you
want to change this option when state retention is active (apd the use_retained progfam_state is
enabled), you'll have to use the appropijiate external comjmand or change it via the web interface.
Values are as follows:

® 0 = Don't execute host checks
® 1 = Execute host checks (default)

Passive Host Check Acceptance Option

Format: accept_passive_host_checks=<0/1>

Example: accept passive_host checks=1

This option determines whether or not Nagios will accept passive host|checks when it initially
(re)starts. If this option is disabled, Nagios will not accept any passive host checks. Note: If you have
[state retentidn enabled, Nagios will ignore this setting when it (re)starts and use the last known setting
for this option (as stored in the state retention file)essyou disable the use retained program |state
option. If you want to change this option when state retention is active (and the

[use retained program_sfate is enabled), you'll have to use the appfopriate external fommand or
change it via the web interface. Values are as follows:

26

® (0 =Don't accept passive host checks
® 1 = Accept passive host checks (default)

Event Handler Option

Format: enable_event_handlers=<0/1>

Example: enable_event handlers=1

This option determines whether or not Nagios will[run event hahdlers when it initially (re)starts. If this
option is disabled, Nagios will not run any host or service event handlers. Note: If ygu hajve state
enabled, Nagios will ignore this setting when it (re)starts and use the last known setting for
this option (as stored in the state retention fil@)essyou disable the use retained program_|state
option. If you want to change this option when state retention is active (and the

[use retained program_sfate is enabled), you'll have to use the appfopriate external command or
change it via the web interface. Values are as follows:

® (= Disable event handlers
e 1 = Enable event handlers (default)

Log Rotation Method

Format: log_rotation_method=<n/h/d/w/m>

Example: log_rotation_method=d

This is the rotation method that you would like Nagios to use for your log file. Values are as follows:

n = None (don't rotate the log - this is the default)

h = Hourly (rotate the log at the top of each hour)

d = Daily (rotate the log at midnight each day)

w = Weekly (rotate the log at midnight on Saturday)

m = Monthly (rotate the log at midnight on the last day of the month)

Log Archive Path

Format: log_archive_path=<path>

Example: log_archive_path=/usr/local/nagios/var/archives/

This is the directory where Nagios should place log files that have been rotated. This option is ignored

if you choose to not use the Tog rotation functionality.

External Command Check Option

27

Format: check_external_commands=<0/1>

Example: check_external_commands=1

This option determines whether or not Nagios will check the commahd file for internal commands it
should execute. This option must be enabled if you plan on usipg the command CGI to issue
commands via the web interface. Third party programs can also issue commands to Nagios by writing
to the command file, provided proper rights to the file have been granted as ouflined in this FAQ.
More information on external commands can be f¢und here.

e 0 = Don’t check external commands (default)
® 1 = Check external commands

External Command Check Interval

Format: command_check_interval=<xxx>[s]

Example: command_check interval=1

If you specify a number with an "s" appended to it (i.e. 30s), this is the numderafdgo wait

between external command checks. If you leave off the "s", this is the number of "time units" to wait
between external command checks. Unless you've changed the interva)_length value (as defined
below) from the default value of 60, this number will mean minutes.

Note: By setting this value td, Nagios will check for external commands as often as possible. Each
time Nagios checks for external commands it will read and process all commands present in the
before continuing on with its other duties. More information on external commands can
be found hele.

External Command File

Format: command_file=<file_name>

Example: command_file=/usr/local/nagios/var/rw/nagios.cmd

This is the file that Nagios will check for external commands to procesf. The command CGI writes
commands to this file. Other third party programs can write to this file if proper file permissions have
been granted as outline[in Nere. The external command file is implemented as a named pipe (FIFO),
which is created when Nagios starts and removed when it shuts down. If the file exists when Nagios
starts, the Nagios process will terminate with an error message. More information on external
commands can be foupd Here.

Downtime File

Format: downtime_file=<file_name>

Example: downtime_file=/usr/local/nagios/var/downtime.dat

28

This is the file that Nagios will use for storing scheduled host and sErvice dojvntime information.
Comments can be viewed and added for both hosts and services thrqugh the extended information
CGl.

Comment File

Format: comment_file=<file_name>

Example: comment_file=/usr/local/nagios/var/comment.dat

This is the file that Nagios will use for storing service and host comments. Comments can be viewed
and added for both hosts and services through the extended informatjon CGlI.

Lock File

Format: lock_file=<file_name>

Example: lock_file=/tmp/nagios.lock

This option specifies the location of the lock file that Nagios should create when it runs as a daemon
(when started with the -d command line argument). This file contains the process id (PID) number of
the running Nagios process.

State Retention Option

Format: retain_state information=<0/1>

Example: retain_state information=1

This option determines whether or not Nagios will retain state information for hosts and services
between program restarts. If you enable this option, you should supply a valud for the stdte_reten-
variable. When enabled, Nagios will save all state information for hosts and service before it
shuts down (or restarts) and will read in previously saved state information when it starts up again.

e (0 =Don't retain state information (default)
® 1 = Retain state information

State Retention File

Format: state_retention_file=<file_name>

Example: state retention_file=/usr/local/nagios/var/retention.dat
This is the file that Nagios will use for storing service and host state information before it shuts down.
When Nagios is restarted it will use the information stored in this file for setting the initial states of

services and hosts before it starts monitoring anything. This file is deleted after Nagios reads in initial
state information when it (re)starts. In order to make Nagios retain state information between program

29

restarts, you must enable the retain_state information option.

Automatic State Retention Update Interval

Format: retention_update_interval=<minutes>

Example: retention_update_interval=60

This setting determines how often (in minutes) that Nagios will automatically save retention data
during normal operation. If you set this value to 0, Nagios will not save retention data at regular inter-
vals, but it will still save retention data before shutting down or restarting. If you have disabled state
retention (with the retain_state informatfion option), this option has no effect.

Use Retained Program State Option

Format: use_retained_program_state=<0/1>

Example: use retained_program_state=1

This setting determines whether or not Nagios will set various program-wide state variables based on
the values saved in the retention file. Some of these program-wide state variables that are normally
saved across program restarts if state retention is enabled inclide the enable notifications,

lenable flap detectiph, enable event handlers, execute service| checks, and
[accept_passive_service_chécks options. If you do no{have state retention enabled, this option has no
effect.

e (0 =Don't use retained program state
® 1 = Use retained program state (default)

Use Retained Scheduling Info Option

Format: use_retained_scheduling_info=<0/1>

Example: use_ retained_scheduling_info=1

This setting determines whether or not Nagios will retain scheduling info (next check times) for hosts
and services when it restarts. If you are adding a large number (or percentage) of hosts and services, |
would recommend disabling this option when you first restart Nagios, as it can adversely skew the
spread of initial checks. Otherwise you will probably want to leave it enabled.

e (0 =Don't use retained scheduling info
® 1 = Use retained scheduling info (default)

Syslog Logging Option

30

Format: use_syslog=<0/1>
Example: use_syslog=1

This variable determines whether messages are logged to the syslog facility on your local host. Values
are as follows:

® 0 = Don't use syslog facility
® 1 = Use syslog facility

Notification Logging Option

Format: log_notifications=<0/1>

Example: log_notifications=1

This variable determines whether or not notification messages are logged. If you have a lot of contacts
or regular service failures your log file will grow relatively quickly. Use this option to keep contact
notifications from being logged.

e 0 =Don't log notifications
® 1 = Log notifications

Service Check Retry Logging Option

Format: log_service_retries=<0/1>

Example: log_service retries=1

This variable determines whether or not service check retries are logged. Service check retries occur
when a service check results in a non-OK state, but you have configured Nagios to retry the service
more than once before responding to the error. Services in this situation are considered to be in "soft"
states. Logging service check retries is mostly useful when attempting to debug Nagios or test out

servicq event handlers.

e 0 =Don't log service check retries
® 1 =l og service check retries

Host Check Retry Logging Option

Format: log_host_retries=<0/1>

Example: log_host retries=1

This variable determines whether or not host check retries are logged. Logging host check retries is
mostly useful when attempting to debug Nagios or test ouf host event Handlers.

31

® (0 =Don't log host check retries
® 1 =Log host check retries

Event Handler Logging Option

Format: log_event_handlers=<0/1>

Example: log_event_handlers=1

This variable determines whether or not service and host event handlers are logged. Event handlers are
optional commands that can be run whenever a service or hosts changes state. Logging event handlers
is most useful when debugging Nagios or first trying out your event handler scripts.

e 0 =Don'’t log event handlers
® 1 =Log event handlers

Initial States Logging Option

Format: log_initial_states=<0/1>

Example: log_initial_states=1
This variable determines whether or not Nagios will force all initial host and service states to be
logged, even if they result in an OK state. Initial service and host states are normally only logged when

there is a problem on the first check. Enabling this option is useful if you are using an application that
scans the log file to determine long-term state statistics for services and hosts.

e (0 = Don't log initial states (default)
® 1 = Log initial states

External Command Logging Option

Format: log_external_commands=<0/1>

Example: log_external_commands=1

This variable determines whether or not Nagios wil| log external cominands that it receives from the
[external command file. Note: This option does not control whether pr not passive service checks
(which are a type of external command) get logged. To enable or disable logging of passive checks,
use th¢ log _passive _service chgcks option.

e (0 =Don't log external commands
® 1 =|og external commands (default)

Passive Check Logging Option

32

Format: log_passive_checks=<0/1>

Example: log_passive_checks=1

This variable determines whether or not Nagios wil|log passive host and servicg checks that it
receives from the external command]file. If you are setting up a distributed monitoring envifonment or
plan on handling a large number of passive checks on a regular basis, you may wish to disable this
option so your log file doesn’t get too large.

® (0 =Don't log passive checks
® 1 = Log passive checks (default)

Global Host Event Handler Option

Format: global_host_event_handler=<command>

Example: global_host _event handler=log-host-event-to-db

This option allows you to specify a host event handler command that is to be run for every host state
change. The global event handler is executed immediately prior to the event handler that you have
optionally specified in each host definition. Té@mmandargument is the short name of a command

that you define in yodr object configuration ffile. The maximum amount of time that this command can
run is controlled by the event_handler_tim¢out option. More information on event handlers can be

found[herg.

Global Service Event Handler Option

Format: global_service_event_handler=<command>

Example: global_service_event_handler=log-service-event-to-db

This option allows you to specify a service event handler command that is to be run for every service
state change. The global event handler is executed immediately prior to the event handler that you
have optionally specified in each service definition. Tmmandargument is the short name of a
command that you define in yqur object configuration file. The maximum amount of time that this
command can run is controlled by the event_handler_timeout option. More information on event
handlers can be foufd hkre.

Inter-Check Sleep Time

Format: sleep_time=<seconds>

Example: sleep_time=1

This is the number of seconds that Nagios will sleep before checking to see if the next service or host
check in the scheduling queue should be executed. Note that Nagios will only sleep after it "catches
up" with queued service checks that have fallen behind.

33

Service Inter-Check Delay Method

Format: service_inter_check_delay method=<n/d/s/x.xx>

Example: service_inter_check _delay_method=s

This option allows you to control how service checks are initially "spread out" in the event queue.
Using a "smart" delay calculation (the default) will cause Nagios to calculate an average check interval
and spread initial checks of all services out over that interval, thereby helping to eliminate CPU load
spikes. Using no delay is generatigt recommended unless you are testing the service checl paral-
functionality. Using no delay will cause all service checks to be scheduled for execution at
the same time. This means that you will generally have large CPU spikes when the services are all
executed in parallel. More information on how to estimate how the inter-check delay affects service
check scheduling can be foUnd lere. Values are as follows:

n = Don’t use any delay - schedule all service checks to run immediately (i.e. at the same time!)
d = Use a "dumb" delay of 1 second between service checks

s = Use a "smart" delay calculation to spread service checks out evenly (default)

X.Xx = Use a user-supplied inter-check delay of x.xx seconds

Maximum Service Check Spread

Format: max_service_check spread=<minutes>

Example: max_service check spread=30

This option determines the maximum number of minutes from when Nagios starts that all services
(that are scheduled to be regularly checked) are checked. This option will automatically adjust the
[service inter-check delpy (if necessary) to ensure that the initial checks of all services occur within the
timeframe you specify. In general, this option will not have an affect on service check scheduling if
scheduling information is being retained using the use retained schedulihg_info option. Default value
is 30 (minutes).

Service Interleave Factor

Format: service_interleave factor=<s{>

Example: service_interleave_factor=s

This variable determines how service checks are interleaved. Interleaving allows for a more even
distribution of service checks, reduced loademotehosts, and faster overall detection of host prob-

lems. With the introduction of service chgck parallelizgtion, remote hosts could get bombarded with
checks if interleaving was not implemented. This could cause the service checks to fail or return incor-
rect results if the remote host was overloaded with processing other service check requests. Setting this
value to 1 is equivalent to not interleaving the service checks (this is how versions of Nagios previous
to 0.0.5 worked). Set this valued@gsmart) for automatic calculation of the interleave factor unless

you have a specific reason to change it. The best way to understand how interleaving works is to watch
the[status CGI (detailed view) when Nagios is just starting. You should see that the service check

34

results are spread out as they begin to appear. More information on how interleaving works can be

found[herg.

® x = A number greater than or equal to 1 that specifies the interleave factor to use. An interleave
factor of 1 is equivalent to not interleaving the service checks.

® s = Use a"smart" interleave factor calculation (default)

Maximum Concurrent Service Checks

Format: max_concurrent_checks=<max_checks>

Example: max_concurrent_checks=20

This option allows you to specify the maximum number of service checks that can bg run i parallel at
any given time. Specifying a value of 1 for this variable essentially prevents any service checks from
being parallelized. Specifying a value of 0 (the default) does not place any restrictions on the number
of concurrent checks. You'll have to modify this value based on the system resources you have avail-
able on the machine that runs Nagios, as it directly affects the maximum load that will be imposed on
the system (processor utilization, memory, etc.). More information on how to estimate how many
concurrent checks you should allow can be fgund here.

Service Reaper Frequency

Format: service_reaper_frequency=<frequency_in_seconds>

Example: service reaper_frequency=10

This option allows you to control the frequenaysecond®f service "reaper” events. "Reaper" events
process the results frgm parallelized service checks that have finished executing. These events consi-
tute the core of the monitoring logic in Nagios.

Host Inter-Check Delay Method

Format: host_inter_check delay method=<n/d/s/x.xx>

Example: host_inter_check delay method=s

This option allows you to control how host chetkat are scheduled to be checked on a regular basis
are initially "spread out" in the event queue. Using a "smart" delay calculation (the default) will cause
Nagios to calculate an average check interval and spread initial checks of all hosts out over that inter-
val, thereby helping to eliminate CPU load spikes. Using no delay is gemeralbcommended.

Using no delay will cause all host checks to be scheduled for execution at the same time. More infor-
mation on how to estimate how the inter-check delay affects host check scheduling can be found
[her¢.Vvalues are as follows:

e n =Don't use any delay - schedule all host checks to run immediately (i.e. at the same time!)
e d = Use a"dumb" delay of 1 second between host checks
® s =Use a "smart" delay calculation to spread host checks out evenly (default)

35

® x.xXx = Use a user-supplied inter-check delay of x.xx seconds

Maximum Host Check Spread

Format: max_host_check_spread=<minutes>

Example: max_host check spread=30

This option determines the maximum number of minutes from when Nagios starts that all hosts (that
are scheduled to be regularly checked) are checked. This option will automatically adfjusi the host
[Inter-check delgy (if necessary) to ensure that the initial checks of all hosts occur within the timeframe
you specify. In general, this option will not have an affect on host check scheduling if scheduling
information is being retained using the use_retained _scheduling_info option. Default Bflue is
(minutes).

Timing Interval Length

Format: interval_length=<seconds>

Example: interval_length=60

This is the number of seconds per "unit interval” used for timing in the scheduling queue, re-notifica-
tions, etc. "Units intervals" are used in the object configuration file to determine how often to run a
service check, how often of re-notify a contact, etc.

Important: The default value for this is set to 60, which means that a "unit value" of 1 in the object
configuration file will mean 60 seconds (1 minute). | have not really tested other values for this vari-
able, so proceed at your own risk if you decide to do so!

Auto-Rescheduling Option

Format: auto_reschedule_checks=<0/1>

Example: auto_reschedule_checks=1

This option determines whether or not Nagios will attempt to automatically reschedule active host and
service checks to "smooth" them out over time. This can help to balance the load on the monitoring
server, as it will attempt to keep the time between consecutive checks consistent, at the expense of
executing checks on a more rigid schedule.

WARNING: THIS IS AN EXPERIMENTAL FEATURE AND MAY BE REMOVED IN FUTURE
VERSIONS. ENABLING THIS OPTION CAN DEGRADE PERFORMANCE - RATHER THAN
INCREASE IT - IF USED IMPROPERLY!

Auto-Rescheduling Interval

36

Format: auto_rescheduling_interval=<seconds>

Example: auto_rescheduling_interval=30

This option determines how often (in seconds) Nagios will attempt to automatically reschedule checks.
This option only has an effect if the auto_reschedule checks option is enabled. Default is 30 seconds.

WARNING: THIS IS AN EXPERIMENTAL FEATURE AND MAY BE REMOVED IN FUTURE
VERSIONS. ENABLING THE AUTO-RESCHEDULING OPTION CAN DEGRADE PERFOR-
MANCE - RATHER THAN INCREASE IT - IF USED IMPROPERLY!

Auto-Rescheduling Window

Format: auto_rescheduling_window=<seconds>

Example: auto_rescheduling_window=180

This option determines the "window" of time (in seconds) that Nagios will look at when automatically
rescheduling checks. Only host and service checks that occur in the next X seconds (determined by
this variable) will be rescheduled. This option only has an effect|if the auto_reschedulg checks option
is enabled. Default is 180 seconds (3 minutes).

WARNING: THIS IS AN EXPERIMENTAL FEATURE AND MAY BE REMOVED IN FUTURE
VERSIONS. ENABLING THE AUTO-RESCHEDULING OPTION CAN DEGRADE PERFOR-
MANCE - RATHER THAN INCREASE IT - IF USED IMPROPERLY!

Agressive Host Checking Option

Format: use_agressive_host_checking=<0/1>

Example: use_agressive_host_checking=0
Nagios tries to be smart about how and when it checks the status of hosts. In general, disabling this
option will allow Nagios to make some smarter decisions and check hosts a bit faster. Enabling this
option will increase the amount of time required to check hosts, but may improve reliability a bit.

Unless you have problems with Nagios not recognizing that a host recovered, | would saggest
enabling this option.

® (0 =Don't use agressive host checking (default)
e 1 = Use agressive host checking

Flap Detection Option

Format: enable_flap_detection=<0/1>

Example: enable flap_detection=0

37

This option determines whether or not Nagios will try and detect hosts and services that are "flapping".
Flapping occurs when a host or service changes between states too frequently, resulting in a barrage of
notifications being sent out. When Nagios detects that a host or service is flapping, it will temporarily
suppress notifications for that host/service until it stops flapping. Flap detection is very experimental at
this point, so use this feature with caution! More information on how flap detection and handling

works can be four[d hére. Note: If you hpve state retgntion enabled, Nagios will ignore this setting

when it (re)starts and use the last known setting for this option (as storefl in the state retgntion file),
unlessyou disable thg use retained program |state option. If you want to change this option when

state retention is active (and fhe use_retained progran_state is enabled), you’ll have to use the appro-
priatel external commahd or change it via the web interface.

e (0 =Don’t enable flap detection (default)
e 1 =Enable flap detection

Low Service Flap Threshold

Format: low_service_flap_threshold=<percent>

Example: low_service flap_threshold=25.0

This option is used to set the low threshold for detection of service flapping. For more information on
how flap detection and handling works (and how this option affects thingg) rdad this.

High Service Flap Threshold

Format: high_service_flap_threshold=<percent>

Example: high_service flap_threshold=50.0

This option is used to set the low threshold for detection of service flapping. For more information on
how flap detection and handling works (and how this option affects thingg) rdad this.

Low Host Flap Threshold

Format: low_host_flap_threshold=<percent>

Example: low _host flap_threshold=25.0

This option is used to set the low threshold for detection of host flapping. For more information on
how flap detection and handling works (and how this option affects thingg) rdad this.

High Host Flap Threshold

Format: high_host_flap_threshold=<percent>

Example: high_host flap_threshold=50.0

38

This option is used to set the low threshold for detection of host flapping. For more information on
how flap detection and handling works (and how this option affects thingg) rdad this.

Soft Service Dependencies Option

Format: soft_state dependencies=<0/1>

Example: soft _state_dependencies=0

This option determines whether or not Nagios will use soft service state information when checking
[service dependenc|es. Normally Nagios will only use the latest hard service state when checking

dependencies. If you want it to use the latest state (regardless of whether its a soft or hard state type),
enable this option.

e (0 = Don't use soft service state dependencies (default)
® 1 = Use soft service state dependencies

Service Check Timeout

Format: service_check_timeout=<seconds>

Example: service check timeout=60

This is the maximum number of seconds that Nagios will allow service checks to run. If checks exceed
this limit, they are killed and a CRITICAL state is returned. A timeout error will also be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last
ditch mechanism to kill off plugins which are misbehaving and not exiting in a timely manner. It

should be set to something high (like 60 seconds or more), so that each service check normally finishes
executing within this time limit. If a service check runs longer than this limit, Nagios will Kill it off

thinking it is a runaway processes.

Host Check Timeout

Format: host_check_timeout=<seconds>

Example: host_check_timeout=60

This is the maximum number of seconds that Nagios will allow host checks to run. If checks exceed
this limit, they are killed and a CRITICAL state is returned and the host will be assumed to be DOWN.
A timeout error will also be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last
ditch mechanism to kill off plugins which are misbehaving and not exiting in a timely manner. It

should be set to something high (like 60 seconds or more), so that each host check normally finishes
executing within this time limit. If a host check runs longer than this limit, Nagios will kill it off think-

ing it is a runaway processes.

39

Event Handler Timeout

Format: event_handler_timeout=<seconds>

Example: event _handler_timeout=60

This is the maximum number of seconds that Nagios will dllow event hgndlers to be run. If an event
handler exceeds this time limit it will be killed and a warning will be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last
ditch mechanism to kill off commands which are misbehaving and not exiting in a timely manner. It
should be set to something high (like 60 seconds or more), so that each event handler command
normally finishes executing within this time limit. If an event handler runs longer than this limit,

Nagios will kill it off thinking it is a runaway processes.

Notification Timeout

Format: notification_timeout=<seconds>

Example: notification_timeout=60

This is the maximum number of seconds that Nagios will allow notification commands to be run. If a
notification command exceeds this time limit it will be killed and a warning will be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last
ditch mechanism to kill off commands which are misbehaving and not exiting in a timely manner. It
should be set to something high (like 60 seconds or more), so that each notification command finishes
executing within this time limit. If a notification command runs longer than this limit, Nagios will kill

it off thinking it is a runaway processes.

Obsessive Compulsive Service Processor Timeout

Format: ocsp_timeout=<seconds>

Example: ocsp_timeout=5

This is the maximum number of seconds that Nagios will allow an obsessive compulsive] service
[processor commahd to be run. If a command exceeds this time limit it will be killed and a warning will
be logged.

Obsessive Compulsive Host Processor Timeout

Format: ochp_timeout=<seconds>

Example: ochp_timeout=5

40

This is the maximum number of seconds that Nagios will allow an obsessive compulsive host proces-
[sor command to be run. If a command exceeds this time limit it will be killed and a warning will be
logged.

Performance Data Processor Command Timeout

Format: perfdata_timeout=<seconds>

Example: perfdata_timeout=5

This is the maximum number of seconds that Nagios will allpw a host performance data pfocessor
[comman{l or service performance data processor comimand to be run. If a command exceeds this time
limit it will be killed and a warning will be logged.

Obsess Over Services Option

Format: obsess_over_services=<0/1>

Example: obsess over_ services=1

This value determines whether or not Nagios will "obsess" over service checks results and run the
[obsessive compulsive service processor command you define. | know - funny name, but it was all |
could think of. This option is useful for performing distributed monitgring. If you're not doing
distributed monitoring, don’t enable this option.

e (0 =Don't obsess over services (default)
® 1 = Obsess over services

Obsessive Compulsive Service Processor Command

Format: ocsp_command=<command>

Example: ocsp_command=obsessive_service handler

This option allows you to specify a command to be run afteryservice check, which can be useful
in[distributed monitoring. This command is executed aftef any event Handler or notification
commands. Theommandargument is the short name of a command defifition that you define in your
object configuration file. The maximum amount of time that this command can run is controlled by the
[ocsp_timeodit option. More information on distributed monitoring can be here. This command is
only executed if the obsess over seryices option is enabled globally andhf#dss over_service
directive in the service definitipn is enabled.

Obsess Over Hosts Option

Format: obsess_over_hosts=<0/1>

Example: obsess over_hosts=1

41

This value determines whether or not Nagios will "obsess" over host checks results anfl run {he obses-
[sive compulsive host processor command you define. | know - funny name, but it was all | could think

of. This option is useful for performing distributed monitoring. If you're not doing distributed moni-
toring, don’t enable this option.

® 0 =Don't obsess over hosts (default)
® 1 = Obsess over hosts

Obsessive Compulsive Host Processor Command

Format: ochp_command=<command>

Example: ochp_command=obsessive _host_handler

This option allows you to specify a command to be run afteryhost check, which can be useful in
|distributed monitorinlg. This command is executed aftef any event Handler or notification commands.
Thecommandargument is the short name ¢f a command defifition that you define in your object
configuration file. The maximum amount of time that this command can run is controlled by the
[ochp_timeoyt option. More information on distributed monitoring can be here. This command is
only executed if the obsess over_hosts option is enabled globally andlisées_over_hosirec-

tive in thg host definitin is enabled.

Performance Data Processing Option

Format: process_performance_data=<0/1>

Example: process_performance data=1

This value determines whether or not Nagios will process host and servicg¢ check performpance data.

e (0 =Don't process performance data (default)
® 1 = Process performance data

Host Performance Data Processing Command

Format: host_perfdata_command=<command>

Example: host_perfdata_command=process-host-perfdata

This option allows you to specify a command to be run afteryhost check to process hpst peffor-
[mance data that may be returned from the checkc@imenandargument is the short name of a
[command definition that you define in your object configuration file. This command is only executed

if the[process performance data option is enabled globally andpfdbess perf datdirective in
the| host definition is enabled.

Service Performance Data Processing Command

42

Format: service_perfdata_command=<command>

Example: service_perfdata_command=process-service-perfdata

This option allows you to specify a command to be run afteryservice check to process service
[performance dalta that may be returned from the checkcdrhemandargument is the short name of a
[command definition that you define in your object configuration file. This command is only executed
if the[process performance data option is enabled globally andpfdbess _perf datdirective in

the| service definitidn is enabled.

Host Performance Data File

Format: host_perfdata_file=<file_name>

Example: host_perfdata file=/usr/local/nagios/var/host-perfdata.dat

This option allows you to specify a file to which Host performancg data will be written after every host
check. Data will be written to the performance file as specified hy the host perfdata_file _template
option. Performance data is only written to this file if{the process performange_data option is enabled
globally and if theprocess_perf_datdirective in th¢ host definitipn is enabled.

Service Performance Data File

Format: service_perfdata_file=<file_name>

Example: service perfdata_file=/usr/local/nagios/var/service-perfdata.dat

This option allows you to specify a file to which seryice performancg¢ data will be written after every
service check. Data will be written to the performance file as specified py the servig¢e_perf-
[data_file_templaje option. Performance data is only written to this file[if the process] perfor-

[mance dafa option is enabled globally and iftteeess_perf_datdirective in th¢ service definitipbn
is enabled.

Host Performance Data File Template

Format: host_perfdata_file_template=<template>

Example: host_perfdata_file_template=[HOSTPERFDATAM$TIMET$\t$HOSTNAMES\tSHOSTEXECUTIONTIMESUSHOSTOUTPUTS\($SHOSTPERFDATAS

This option determines what (and how) data is written tp the host performance flata file. The template
may contaifh macrs, special characters (\t for tab, \r for carriage return, \n for newline) and plain text.
A newline is automatically added after each write to the performance data file.

Service Performance Data File Template

Format: service_perfdata_file_template=<template>

Example: service_perfdata_file_template=[SERVICEPERFDATAMSTIMET$\(SHOSTNAMES\$SERVICEDESC$\$SERVICEEXECUTIONTIMESUSSERVICELATENCY\tSSERVICEOUTPUTSUWSSERVICEPERFDATAS

43

This option determines what (and how) data is written tp the service performance [data file. The
template may conta[n macfos, special characters (\t for tab, \r for carriage return, \n for newline) and
plain text. A newline is automatically added after each write to the performance data file.

Host Performance Data File Mode

Format: host_perfdata_file_mode=<mode>

Example: host perfdata_file_mode=a

This option determines whether the host performance ddta file is opened in write or append mode.
Unless the file is a named pipe, you will probably want to use the default mode of append.

® a = Open file in append mode (default)
® w = Open file in write mode

Service Performance Data File Mode

Format: service_perfdata_file_mode=<mode>

Example: service_perfdata_file_mode=a

This option determines whether the service performance data file is opened in write or append mode.
Unless the file is a named pipe, you will probably want to use the default mode of append.

® a = Open file in append mode (default)
® w = Open file in write mode

Host Performance Data File Processing Interval

Format: host_perfdata_file processing_interval=<seconds>

Example: host perfdata_file_processing_interval=0

This option allows you to specify the interval (in seconds) at whigh the host performance |data file is
processed using the host performance data file processing command. A value of 0 indicates that the
performance data file should not be processed at regular intervals.

Service Performance Data File Processing Interval

Format: service_perfdata_file_processing_interval=<seconds>

Example: service_perfdata_file_processing_interval=0

44

This option allows you to specify the interval (in seconds) at whidh the service performance|data file is
processed using the service performance data file processing cdgmmand. A value of 0 indicates that the
performance data file should not be processed at regular intervals.

Host Performance Data File Processing Command

Format: host_perfdata_file_processing_command=<command>

Example: host perfdata_file_processing_command=process-host-perfdata-file

This option allows you to specify the command that should be executed to prog¢ess the hgst perfor-

imance data file. Theommandargument is the short name ¢f a command definition that you define in
your object configuration file. The interval at which this command is executed is determined by the

lhost perfdata file processing intetval directive.

Service Performance Data File Processing Command

Format: service_perfdata_file_processing_command=<command>

Example: service perfdata_file_processing_command=process-service-perfdata-file

This option allows you to specify the command that should be executed to pro§ess the service perfor-

mance data file. Theommandargument is the short name ¢f a command defiition that you define in
your object configuration file. The interval at which this command is executed is determined by the

|service perfdata file processing intefval directive.

Orphaned Service Check Option

Format: check_for_orphaned_services=<0/1>

Example: check for_orphaned_services=0

This option allows you to enable or disable checks for orphaned service checks. Orphaned service
checks are checks which ahve been executed and have been removed from the event queue, but have
not had any results reported in a long time. Since no results have come back in for the service, it is not
rescheduled in the event queue. This can cause service checks to stop being executed. Normally it is
very rare for this to happen - it might happen if an external user or process killed off the process that
was being used to execute a service check. If this option is enabled and Nagios finds that results for a
particular service check have not come back, it will log an error message and reschedule the service
check. If you start seeing service checks that never seem to get rescheduled, enable this option and see
if you notice any log messages about orphaned services.

e (0 =Don't check for orphaned service checks (default)
® 1 = Check for orphaned service checks

Service Freshness Checking Option

45

Format: check_service_freshness=<0/1>

Example: check_service_freshness=0

This option determines whether or not Nagios will periodically check the "freshness" of service
checks. Enabling this option is useful for helping to ensurg that passive servicg¢ checks are received in
a timely manner. More information on freshness checking can be[fouhd here.

® (0 =Don’t check service freshness
® 1 = Check service freshness (default)

Service Freshness Check Interval

Format: service_freshness check_interval=<seconds>

Example: service_freshness_check interval=60

This setting determines how often (in seconds) Nagios will periodically check the "freshness" of
service check results. If you have disabled service freshness checking (ith the check servjce_fresh-
ness option), this option has no effect. More information on freshness checking can the fqund here.

Host Freshness Checking Option

Format: check_host_freshness=<0/1>
Example: check host freshness=0
This option determines whether or not Nagios will periodically check the "freshness" of host checks.

Enabling this option is useful for helping to ensure|that passive host [checks are received in a timely
manner. More information on freshness checking can be founld here.

® 0 = Don’t check host freshness
® 1 = Check host freshness (default)

Host Freshness Check Interval

Format: host_freshness_check_interval=<seconds>

Example: host freshness_check interval=60

This setting determines how often (in seconds) Nagios will periodically check the "freshness" of host
check results. If you have disabled host freshness checking (wjith the check host freshness option),
this option has no effect. More information on freshness checking can bd found here.

Date Format

46

Format: date_format=<option>

Example: date_format=us

This option allows you to specify what kind of date/time format Nagios should use in the web inter-
face and date/tin]e macfos. Possible options (along with example output) include:

Option Output Format Sample Output
us MM/DD/YYYY HH:MM:SS | 06/30/2002 03:15:00
euro DD/MM/YYYY HH:MM:SS | 30/06/2002 03:15:00
is08601 YYYY-MM-DD HH:MM:SS | 2002-06-30 03:15:00
strict-iso8601 YYYY-MM-DDTHH:MM:SS | 2002-06-30T03:15:0D

lllegal Object Name Characters

Format: illegal_object name_chars=<chars...>

Example: illegal_object name_chars="~I1$%"&*"|'<>?,()=

This option allows you to specify illegal characters that cannot be used in host names, service descrip-
tions, or names of other object types. Nagios will allow you to use most characters in object defini-
tions, but | recommend not using the characters shown in the example above. Doing may give you
problems in the web interface, notification commands, etc.

lllegal Macro Output Characters

Format: illegal_macro_output_chars=<chars...>

Example: illegal_macro_output chars="~$"&"|'<>

This option allows you to specify illegal characters that should be strippefl from Jnacros before being
used in notifications, event handlers, and other commands. This DOES NOT affect macros used in
service or host check commands. You can choose to not strip out the characters shown in the example
above, but | recommend you do not do this. Some of these characters are interpreted by the shell (i.e.
the backtick) and can lead to security problems. The following macros are stripped of the characters

you specify:

$HOSTOUTPUTS, SHOSTPERFDATAS$, $SHOSTACKAUTHORS , SHOSTACKCOMMENTS$
$SERVICEOUTPUTS, $SERVICEPERFDATAS$, $SERVICEACKAUTHORS , and
$SERVICEACKCOMMENT$

Regular Expression Matching Option

47

Format: use_regexp_matching=<0/1>

Example: use_regexp_matching=0

This option determines whether or not various directives in|your object defihitions will be processed as
regular expressions. More information on how this works can be fourjd here.

e 0 = Don’t use regular expression matching (default)
® 1 = Use regular expression matching

True Regular Expression Matching Option

Format: use_true_regexp_matching=<0/1>

Example: use_true_regexp_matching=0

If you've enabled regular expression matching of various object directives using the

[use _regexp matchihg option, this option will determine when object directives are treated as regular
expressions. If this option is disabled (the default), directives will only be treated as regular expres-
sions if the contain & or ? wildcard character. If this option is enabled, all appropriate directives will
be treated as regular expression - be careful when enabling this! More information on how this works

can be founfl hefre.

® (0 =Don’t use true regular expression matching (default)
® 1 = Use true regular expression matching

Administrator Email Address

Format: admin_email=<email_address>

Example: admin_email=root@Iocalhost.localdomain
This is the email address for the administrator of the local machine (i.e. the one that Nagios is running
on). This value can be used in notification commands by usirRABMINEMAILS$ [macr¢.

Administrator Pager

Format: admin_pager=<pager_number_or_pager_email_gateway>

Example: admin_pager=pageroot@Ilocalhost.localdomain

This is the pager number (or pager email gateway) for the administrator of the local machine (i.e. the

one that Nagios is running on). The pager number/address can be used in notification commands by
using theSADMINPAGERS [macr¢.

48

Object Definitions

What is Object Data?

Object data is simply a generic term | use to describe various data definitions you need in order to
monitor anything. Types of object definitions include:

Services

Service Groups

Hosts

Host Groups

Contacts

Contact Groups
Commands

Time Periods

Service Escalations
Service Dependencies
Host Escalations

Host Dependencies
Extended Host Information
Extended Service Information

Where Is Object DataDefined?

Object data is defined in one or more configuration files that you specify using the tfg_file and/or
cfg_dif directives in thg main configuration file. You can include multiple object configuration files
and/or directories by using multipbég_file and/orcfg_dir directives.

How Is Object Data Defined?

Object definitions are defined in a template for here for more information on defining object
data using this method.

49

CGlI Configuration File Options

Notes
When creating and/or editing configuration files, keep the following in mind:

1. Lines that start with a '#' character are taken to be comments and are not processed
2. Variables names must begin at the start of the line - no white space is allowed before the name
3. Variable names are case-sensitive

SampleConfiguration

A sample CGI configuration file is created when you run the configure script - you can find the sample
config file in thesample-configéubdirectory of the Nagios distribution.

Config File Location

By default, Nagios expects the CGI configuration file to be nasgedfg and located in the config

file directory along with the main config fjle. If you need to change the name of the file or its location,
you can configure Apache to pass an environment variable named NAGIOS_CGI_CONFIG (which
points to the correct location) to the CGls. See the Apache documentation for information on how to
do this.

Index

[Main configuration file lTocatidn
[Physical HTML path

[URL HTML patH

[Nagios process check commpnd
[Authentication usage

[Default user nane
[System/process information acgess
[System/process command acfess
[Configuration information accdss
|Global host information accegss
|Global host command accgss
|Global service information accéss
|Global service command accdess
[Statusmap CGI background image
|[Default statusmap layout method
[Statuswrl CGl include world
[Default statuswrl layout methjpd
|CGI refresh rafe

Ping synta}

Main Configuration File Location

50

Format: main_config_file=<file_name>

Example: main_config_file=/usr/local/nagios/etc/nagios.cfg

This specifies the location of ygur main configuratior] file. The CGls need to know where to find this
file in order to get information about configuration information, current host and service status, etc.

Physical HTML Path

Format: physical_html_path=<path>

Example: physical_html_path=/usr/local/nagios/share

This is thephysicalpath where the HTML files for Nagios are kept on your workstation or server.
Nagios assumes that the documentation and images files (used by the CGIs) are stored in subdirecto-
ries calleddocs/andimages/ respectively.

URL HTML Path

Format: url_html_path=<path>

Example: url_html_path=/nagios

If, when accessing Nagios via a web browser, you point to an URL like
http://www.myhost.com/nagios this value should bagios Basically, its the path portion of the
URL that is used to access the Nagios HTML pages.

Nagios Process Check Command

Format: nagios_check_command=<command_line>

Example: nagios_check_command=/usr/local/nagios/libexec/check nagios
/usr/local/nagios/var/status.log 5 '/usr/local/nagios/bin/nagios -d
/usr/local/nagios/etc/nagios.cfg’

This is anoptionalcommand that the CGls can use to check the status of the Nagios process. This
provides the CGls (as well as yourself) with some idea of whether or not Nagios is still running. If you
do not specify a command to be run, the CGls will assume that the Nagios process is running. If you
do define a process check command, it should follow the same guidelines that are required of standard
plugins. If the command returns a non-OK status, the CGls will think the Nagios process is not

running and will refuse to allow you to commit any commands vip the commard CGI.

Authentication Usage

51

Format: use_authentication=<0/1>

Example: use_authentication=1

This option controls whether or not the CGls will use the authentication and authorization functional-
ity when determining what information and commands users have access to. | would strongly suggest
that you use the authentication functionality for the CGls. If you decide not to use authentication,
make sure to remove the commandCGI to prevent unauthorized users from issuing commands to
Nagios. The CGI will not issue commands to Nagios if authentication is disabled, but | would suggest
removing it altogether just to be on the safe side. More information on how to setup authentication and
configure authorization for the CGls can be found]here.

e 0 = Don’t use authentication functionality
e 1 = Use authentication and authorization functionality (default)

Default User Name

Format: default_user_name=<username>

Example: default_user_name=guest

Setting this variable will define a default username that can access the CGls. This allows people within
a secure domain (i.e., behind a firewall) to access the CGlIs without necessarily having to authenticate
to the web server. You may want to use this to avoid having to use basic authentication if you are not
using a secure server, as basic authentication transmits passwords in clear text over the Internet.

Important: Do notdefine a default username unless you are running a secure web server and are sure
that everyone who has access to the CGls has been authenticated in some manner! If you define this
variable, anyone who has not authenticated to the web server will inherit all rights you assign to this
user!

System/Process Information Access

Format: authorized_for_system_information=<userl>,<user2>,<user3>,...<UJE¥

Example: authorized_for_system_information=nagiosadmin,theboss

This is a comma-delimited list of namesanithenticated usensho can view system/process informa-

tion in thg extended information JGI. Users in this listreseautomatically authorized to issue
system/process commands. If you want users to be able to issue system/process commands as well,
you must add them to the authorized for _system cominands variable. More information on how to
setup authentication and configure authorization for the CGls can bd fouhd here.

System/Process Command Access

Format: authorized_for_system_commands=<userl>,<user2>,<user3>,...<user

Example: authorized_for_system_commands=nagiosadmin

52

This is a comma-delimited list of namesanithenticated usensho can issue system/process

commands via tHe command GGl. Users in this lishatautomatically authorized to view
system/process information. If you want users to be able to view system/process information as well,
you must add them to the authorized for_system _information variable. More information on how to
setup authentication and configure authorization for the CGls can be fouhd here.

Configuration Information Access

Format: authorized_for_configuration_information=<userl>,<user2>,<user3>,...<usep

Example: authorized_for_configuration_information=nagiosadmin

This is a comma-delimited list of namesanithenticated usensho can view configuration informa-

tion in thg configuration CGl. Users in this list can view information on all configured hosts, host
groups, services, contacts, contact groups, time periods, and commands. More information on how to
setup authentication and configure authorization for the CGls can be fouhd here.

Global Host Information Access

Format: authorized_for_all_hosts=<userl>,<user2>,<user3>,...<Usef

Example: authorized_for_all_hosts=nagiosadmin,theboss

This is a comma-delimited list of namesanithenticated usensho can view status and configuration
information for all hosts. Users in this list are also automatically authorized to view information for all
services. Users in this list anet automatically authorized to issue commands for all hosts or services.

If you want users able to issue commands for all hosts and services as well, you must add them to the
[authorized for all _host commands variable. More information on how to setup authentication and
configure authorization for the CGls can be found]here.

Global Host Command Access

Format: authorized_for_all_host commands=<userl>,<user2>,<user3>,...<uger

Example: authorized for_all_host_commands=nagiosadmin

This is a comma-delimited list of namesanithenticated usensho can issue commands for all hosts

via thg command CGl. Users in this list are also automatically authorized to issue commands for all
services. Users in this list anet automatically authorized to view status or configuration information

for all hosts or services. If you want users able to view status and configuration information for all
hosts and services as well, you must add them {o the authorized for gl _hosts variable. More informa-
tion on how to setup authentication and configure authorization for the CGls can b folind here.

Global Service Information Access

53

Format: authorized_for_all_services=<userl>,<user2>,<user3>,...<user

Example: authorized_for_all_services=nagiosadmin,theboss

This is a comma-delimited list of namesanithenticated usensho can view status and configuration
information for all services. Users in this list @ automatically authorized to view information for
all hosts. Users in this list an®t automatically authorized to issue commands for all services. If you
want users able to issue commands for all services as well, you must add thdm to the autho-
[rized for_all service _commands variable. More information on how to setup authentication and
configure authorization for the CGls can be found]here.

Global Service Command Access

Format: authorized_for_all_service_commands=<userl>,<user2>,<user3>,...<user

Example: authorized_for_all_service_commands=nagiosadmin

This is a comma-delimited list of namesanithenticated usemsho can issue commands for alll

services via the_command GGI. Users in this lisnateutomatically authorized to issue commands

for all hosts. Users in this list anet automatically authorized to view status or configuration informa-
tion for all hosts. If you want users able to view status and configuration information for all services as
well, you must add them to the authorized for_all services variable. More information on how to
setup authentication and configure authorization for the CGls can be fouhd here.

Statusmap CGI Background Image

Format: statusmap_background_image=<image_file>

Example: statusmap_background_image=smbackground.gd2

This option allows you to specify an image to be used as a backgrounfl in the statusimap CGl if you use
the user-supplied coordinates layout method. The background image is not be available in any other
layout methods. It is assumed that the image resides in the HTML images path (i.e.
lusr/local/nagios/share/images). This path is automatically determined by appending "/images" to the
path specified by the physical html_path directive. Note: The image file can be in GIF, JPEG, PNG,

or GD2 format. However, GD2 format (preferably in uncompressed format) is recommended, as it will
reduce the CPU load when the CGI generates the map image.

Default Statusmap Layout Method

Format: default_statusmap_layout=<layout_number>

Example: default statusmap_layout=4

This option allows you to specify the default layout method used By the statusnjap CGl. Valid options
are:

54

<layout_number> Value Layout Method

0 User-defined coordinatgs
1 Depth layers

2 Collapsed tree

3 Balanced tree

4 Circular

5 Circular (Marked Up)

6 Circular (Balloon)

Statuswrl CGI Include World

Format: statuswrl_include=<vrml_file>

Example: statuswrl_include=myworld.wrl
This option allows you to include your own objects in the generated VRML world. It is assumed that

the file resides in the path specified by|the physical html| path directive. Note: This file must be a
fully qualified VRML world (i.e. you can view it by itself in a VRML browser).

Default Statuswrl Layout Method

Format: default_statuswrl_layout=<layout_number>

Example: default_statuswrl_layout=4

This option allows you to specify the default layout method used lyy the statuswrl CGI. Valid options
are:

<layout_number> Value Layout Method

0 User-defined coordinatgs
2 Collapsed tree

3 Balanced tree

4 Circular

CGI Refresh Rate

55

Format: refresh_rate=<rate_in_seconds>

Example: refresh_rate=90

This option allows you to specify the number of seconds between page refreshefs for fhe status,
|statusmalp, arjd extinfo CGls.

Audio Alerts

Formats: host_unreachable sound=<sound_file>
host_down_sound=<sound_file>
service_critical_sound=<sound_file>
service_warning_sound=<sound_file>
service_unknown_sound=<sound_file>

Examples: host_unreachable_sound=hostu.wav
host_down_sound=hostd.wav
service_critical_sound=critical.wav
service_warning_sound=warning.wav
service_unknown_sound=unknown.wav

These options allow you to specify an audio file that should be played in your browser if there are
problems when you are viewing fhe status]CGI. If there are problems, the audio file for the most criti-
cal type of problem will be played. The most critical type of problem is on or more unreachable hosts,
while the least critical is one or more services in an unknown state (see the order in the example
above). Audio files are assumed to be inrtteglia/ subdirectory in your HTML directory (i.e.
lusr/local/nagios/share/media

Ping Syntax

Format: ping_syntax=<command>

Example: ping_syntax=/bin/ping -n -U -c 5 SHOSTADDRESS$

This option determines what syntax should be used when attempting to ping a host from the WAP
interface (using thle statuswml GGI. You must include the full path to the ping binary, along with all
required options. The $HOSTADDRESS$ macro is substituted with the address of the host before the
command is executed.

56

Authentication And Authorization In The CGls

Notes

Throughout these instructions | will be assuming that you are runnifig the Apache web server on your
machine. If you are running some other web server, you will have to make some adjustments.

Definitions

Throughout these instructions | will be using the following terms, so you should understand what they
mean...

® An authenticated usas an someone who has authenticated to the web server with a username
and password and has been granted access to the CGls by the web server

® An authenticated contads an authenticated user whose username matches the short name of a
contact definition in yodr object configuration filg(s).

Index

|[Configuring web server authentication

[Setting up authenticated uders

|[Enabling authentication/authorization functionality in the CGls
[Default permissions to CGI informatijon

|Granting additional permissions to CGI information
|[Authentication on secure web servers

Configuring Web ServerAuthentication

The first step to configuring your web server for authentication is to make sure the web server configu-
ration file (i.e.httpd.conf) file contains anAllowOverride AuthConfig ’ statement in it for the

Nagios CGI-BIN directory. If it doesn’t, you'll have to add something similiar to the following to your
web server configuration file. Note that you will have to restart the web server in order for this change
to take effect.

<Directory /usr/local/nagios/shin>
AllowOverride AuthConfig

order allow,deny

allow from all

Options ExecCGl

</Directory>

If you also want to require authentication for access the HTML pages for Nagios, add something simil-
iar to the following in the web server configuration file as well.

<Directory /usr/local/nagios/share>
AllowOverride AuthConfig

order allow,deny

allow from all

</Directory>

The second step is to create a file nanmglccessn the root your CGl directory (and optionally also
you HTML directory) for Nagios (usually /usr/local/nagios/sbin and /usr/local/nagios/share, respec-
tively). The file(s) should have contents similiar to the following...

57

http://www.apache.org/

AuthName "Nagios Access"

AuthType Basic

AuthUserFile /usr/local/nagios/etc/htpasswd.users
require valid-user

Setting Up Authenti catedUsers

Now that you've configured the web server to require authentication for access to the CGls, you'll
need to configure users who can access the CGls. This is done by usitpassvdcommand
supplied with Apache.

Running the following command will create a new file caliguasswd.users the
lusr/local/nagios/etdirectory. It will also create an username/password entnyagiosadminYou
will be asked to provide a password that will be used wiagiosadmirauthenticates to the web
server.

htpasswd -c /usr/local/nagios/etc/htpasswd.users nagiosadmin

Continue adding more users until you've created an account for everyone you want to access the CGls.
Use the following command to add additional users, replacing <username> with the actual username
you want to add. Note that theoption is not used, since you already created the initial file.

htpasswd /usr/local/nagios/etc/htpasswd.users <username>

Okay, so you're done with the first part of what needs to be done. If you point your web browser to
your Nagios CGls you should be asked for a username and password. If you have problems getting
user authentication to work at this point, read your webserver documentation for more info.

Enabling Authentication/Authorization Functionality In The CGls

The next thing you need to do is make sure that the CGls are configured to use the authentication and
authorization functionality in determining what information and/or commands users have access to.
This is done be setting the use authentichtion variable jn the CGI configuration file to a non-zero
value. Example:

use_authentication=1
Okay, you're now done with setting up basic authentication/authorization functionality in the CGls.

Default PermissionsTo CGI Infor mation

So what default permissions do users have in the CGls by default when the authentication/authoriza-
tion functionality is enabled?

58

CGl Data Authenticated Contadfs Other Authenticated Uséig

Host Status Information No

Host Configuration Information No

Host History No

Host Notifications No

Host Commands No

Service Status Information No

Service Configuration Informati No

Service History No
Service Notifications No
Service Commands No
All Configuration Information No No
System/Process Information No No
System/Process Commands No No

Authenticated contadisare granted the following permissions for eaehvicefor which they are
contacts (but not for services for which they are not contacts)...

® Authorization to view service status information

e Authorization to view service configuration information

e Authorization to view history and notifications for the service
® Authorization to issue service commands

Authenticated contadiisare granted the following permissions for ehokt for which they are
contacts (but not for hosts for which they are not contacts)...

Authorization to view host status information

Authorization to view host configuration information

Authorization to view history and notifications for the host

Authorization to issue host commands

Authorization to view status information for all services on the host

Authorization to view configuration information for all services on the host
Authorization to view history and notification information for all services on the host
Authorization to issue commands for all services on the host

It is important to note that by defauld oneis authorized for the following...

Viewing the raw log file via thg_showlog JGlI

Viewing Nagios process information via the extended information CGI

Issuing Nagios process commands vid the commanH CGlI
Viewing host group, contact, contact group, time period, and command definitions|via thg config-

59

uration CG|

You will undoubtably want to access this information, so you'll have to assign additional rights for
yourself (and possibly other users) as described below...

Granting Additional PermissionsTo CGI Infor mation

You can granauthenticated contacts otherauthenticated usengermission to additional informa-

tion in the CGls by adding them to various authorization variables jn the CGI configuration file. |
realize that the available options don't allow for getting really specific about particular permissions,
but its better than nothing..

Additional authorization can be given to users by adding them to the following variables in the CGI
configuration file...

lauthorized for system informatlon
lauthorized for system commahds
[authorized for configuration informatjon
[authorized for all hosts

lauthorized for all host commands
[authorized for all services

lauthorized for all service commahds

CGI Authorization Requirements

If you are confused about the authorization needed to access various information in the CGls, read the
Authorization Requirements section for each CGI as descrilped here.

Authentication On Secured WebServers

If your web server is located in a secure domain (i.e., behind a firewall) or if you are using SSL, you
can define a default username that can be used to access the CGls. This is done by defining the
[default_user _name option in the CGI configuration file. By defining a default username that can
access the CGls, you can allow users to access the CGls without necessarily having to authenticate to
the web server.. You may want to use this to avoid having to use basic web authentication, as basic
authentication transmits passwords in clear text over the Internet.

Important: Do notdefine a default username unless you are running a secure web server and are sure
that everyone who has access to the CGls has been authenticated in some manner! If you define this
variable, anyone who has not authenticated to the web server will inherit all rights you assign to this
user!

60

Verifying Your Nagios Configuration

Verifying The Configuration From The CommandLine

Once you've entered all the necessary data into the configuratign files, its time to do a sanity check.
Everyone make mistakes from time to time, so its best to verify what you've entered. Nagios automati-
cally runs a "pre-flight check" before before it starts monitoring, but you also have the option of
running this check manually before attempting to start Nagios. In order to do this, you must start
Nagios with thev command line argument as follows...

lusr/local/nagios/bin/nagios -v <main_config_file>

Note that you should be entering the path/filename of y@in configuration file (i.e.
lusr/local/nagios/etc/nagios.of@s the second argument. Nagios will read your main configuratipn file
and all object configuration files and verify that they contain valid data.

Relationships Verified During The Pre-Flight Check

During the "pre-flight check", Nagios verifies that you have defined the data relationships necessary
for monitoring. Objects are all related and need to be setup properly in order for things to run. This is a
list of the basic things that Nagios attempts to check before it will start monitoring...

Verify that all contacts are a member of at least one contact group.

Verify that all contacts specified in each contact group are valid.

Verify that all hosts are a member of at least one host group.

Verify that all hosts specified in each host group are valid.

Verify that all hosts have at least one service associated with them.

Verify that all commands used in service and host checks are valid.

Verify that all commands used in service and host event handlers are valid.

Verify that all commands used in contact service and host notifications are valid.

Verify that all notification time periods specified for services, hosts, and contact are valid.
Verify that all service check time periods specified for services are valid.

©ooNoO~WNPRE

=
e

Fixing Configuration Errors

If you've forgotten to enter some critical data or just plain screwed things up, Nagios will spit out a
warning or error message that should point you to the location of the problem. Error messages gener-
ally print out the line in the configuration file that seems to be the source of the problem. On errors,
Nagios will often exit the pre-flight check and return to the command prompt after printing only the

first error that it has encountered. This is done so that one error does not cascade into multiple errors as
the remainder of the configuration data is verified. If you get any error messages you'll need to go and
edit your configuration files to remedy the problem. Warning messagegnarallybe safely

ignored, since they are only recommendations and not requirements.

Where To Go FromHere

Once you've verified your configuration files and fixed any errors, you can be reasonably sure that
Nagios will start monitoring the services you've specified. Qn to starting Nagios!

61

62

Starting Nagios

IMPORTANT: Before you actually start Nagios, you'll have to make sure that yoJ have corfigured it
properly and verified the config data!

Methods For Starting Nagios

There are basically four different ways you can start Nagios:

Manually, as a foreground process (useful for initial testing and debugging)
Manually, as a background process

Manually, as a daemon

Automatically at system boot

PR

Let's examine each method briefly...

Running NagiosManually as aForeground Process

If you enabled the debugging options when running the configure script (and recompiled Nagios), this
would be your first choice for testing and debugging. Running Nagios as a foreground process at a
shell prompt will allow you to more easily view what's going on in the monitoring and notification
processes. To run Nagios as a foreground process for testing, invoke Nagios like this...

/usr/local/nagios/bin/nagios <main_config_file>

Note that you must specify the path/flename of the main configuratipn file (i.e.
/usr/local/nagios/etc/nagios.gfgn the command line.

To stop Nagios at any time, just press CTRL-C. If you've enabled the debugging options you'll proba-
bly want to redirect the output to a file for easier review later.

Running NagiosManually as aBackground Process

To run Nagios as a background process, invoke it with an ampersand as follows...

{usr/local/nagios/bin/nagios <main_config_file> &

Note that you must specify the path/filename of the main configuratipn file (i.e.
lusr/local/nagios/etc/nagios.gfgn the command line.

Running NagiosManually as aDaemon

In order to run Nagios in daemon mode you must supplydtsavitch on the command line as
follows...

{usr/local/nagios/bin/nagios -d <main_config_file>

Note that you must specify the path/filename of the main configuratipn file (i.e.
{usr/local/nagios/etc/nagios.gfgn the command line.

63

Running NagiosAutomatically at SystemBoot

When you have tested Nagios and are reasonably sure that it is not going to crash, you will probably
want to have it start automatically at boot time. To do this (in Linux) you will have to create a startup
script in your/etc/rc.d/init.d/ directory. You will also have to create a link to the script in the
runlevel(s) that you wish to have Nagios to start in. I'll assume that you know what I'm talking about
and are able to do this.

A sample init script (namedlemon-init) is created in the base directory of the Nagios distribution
when you run the configure script. You can install the sample script to your /etc/rc.d/init.d directory
using the make install-init” command, as outlined in the installafion instructions.

The sample init scripts are designed to work under Linux, so if you want to use them under FreeBSD,
Solaris, etc. you may have to do a little hacking...

Stopping and Restarting Nagios

Directions on how to stop and restart Nagios can be here.

64

Stopping And Restarting Nagios

Once you have Nagios up and running, you may need to stop the process or reload the configuration
data "on the fly". This section describes how to do just that.

IMPORTANT: Before you restart Nagios, make sure that you have verified the configuration data
using the -v command line switolspeciallyif you have made any changes to your config]files. If
Nagios encounters problem with one of the config files when it restarts, it will log an error and termi-
nate.

Stopping And Restarting With The Init Script

If you have installed the sample init script to your /etc/rc.d/init.d directory you can stop and restart
Nagios easily. If you haven't, skip this section and read how to do it manually below. I'll assume that
you named the init scripdagiosin the examples below...

Desired Action | Command Description

Stop Nagios /etc/rc.d/init.d/nagios stop | This Kills the Nagios process

This Kills the current Nagios process and then

Restart Nagios | /etc/rc.d/init.d/nagios restart . .
starts Nagios up again

Sends a SIGHUP to the Nagios process, caus
/etc/rc.d/init.d/nagios reload | it to flush its current configuration data, reread
the configuration files, and start monitoring aggin

Reload Configu- n9

ration Data

Stopping, restarting, and reloading Nagios are fairly simple with an init script and | would highly
recommend you use one if at all possible.

Stopping and Restarting NagiosManually

If you aren’t using an init script to start Nagios, you’ll have to do things manually. First you'll have to
find the process ID that Nagios is running under and then you’ll have to ug#é tmmmand to termi-

nate the application or make it reload the configuration data by sending it the proper signal. Directions
for doing this are outlined below...

Finding The Nagios ProcestD

First off, you will need to know the process id that Nagios is running as. To do that, just type the
following command at a shell prompt:

ps axu | grep nagios

The output should look something like this:

nagios 6808 0.0 0.7 840 352 p3S 13:44 0:00 grep hagios
nagios 11149 0.2 1.0 868 488 ? S Feb 27 6:33 /usr/local/nagios/bin/nagios nagios.cfg

From the program output, you will notice that Nagios was started byag&rsand is running as
process idl1149

65

Manually Stopping Nagios

In order to stop Nagios, use tkid command as follows...
kill 11149
You should replac&1149with the actual process id that Nagios is running as on your machine.

Manually Restarting Nagios

If you have modified the configuration data, you will want to restart Nagios and have it re-read the
new configuration. If you have changed the source code and recompiled the main Nagios executable
you shouldhot use this method. Instead, stop Nagios by killing it (as outlined above) and restart it
manually. Restarting Nagios using the method below does not actually reload Nagios - it just causes
Nagios to flush its current configuration, re-read the new configuration, and start monitoring all over
again. To restart Nagios, you need to sen®tlBHUP signal to Nagios. Assuming that the process id
for Nagios is11149(taken from the example above), use the following command:

kill -HUP 11149

Remember, you will need to replat&149with the actual process id that Nagios is running as on your
machine.

66

Nagios Plugins

What Are Plugins?

Plugins are compiled executables or scripts (Perl, shell, etc.) that can be run from a command line to
check the status or a host or service. Nagios uses the results from plugins to determine the current
status or hosts and services on your network. No, you can’t get away without using plugins - Nagios is
useless without them.

Obtaining Plugins

Plugin development for Nagios is being done at SourceForge. The Nagios plugin development project
page (where the latest version of by plugins can always be found) is lodated at http:}/source-
[forge.net/projects/nagiospllig/.

How Do | Use PluginX?

Documentation on how to use individual pluginads$ supplied with the core Nagios distribution. You
should refer to the latest plugin distribution for information on using plugins. Karl DeBisschop, lead
plugin developer/maintainer points out the following:

All plugins that comply with minimal development guideline for this project include internal
documentation. The documentation can be read executing plugin with the ’-h’ option (--help’ if
long options are enabled). If the ’-h’ option does not work, that is a bug.

For example, if you want to know how the check_http plugin works or what options it accepts, you
should try executing one of the following commands:

Jcheck_http --help
or
Jcheck_http -h

Command Definition Examples For Services

It is important to note that command definitions found in sample config files in the core Nagios distri-
bution are probablpot accurate as to command line parameters, etc when it comes to the plugins.
They are simply provided as examples of how to define commands.

Creating Custom Plugins

Creating your own plugins to perform custom host or service checks is easy. You can find information

on how to write plugins @t http://sourceforge.net/projects/nagiogplug/. The developer guidelines can be
found af http://nagiosplug.sourceforge.net/developer-guidelinek.html.

67

http://sourceforge.net/projects/nagiosplug/
http://sourceforge.net/projects/nagiosplug/
http://sourceforge.net/projects/nagiosplug/
http://nagiosplug.sourceforge.net/developer-guidelines.html

Nagios Addons

Several "addons” are available for Nagios on the Nagios downloads page -
|http://www.nagios.org/downlodd/.

Addons are available for:

e Managing the config files through a web interface
® Monitoring remote hosts (*NIX, Windows, etc.)

® Submitting passive checks from remote hosts

e Simplifying/extending the notification logic

e ..and much more

68

http://www.nagios.org/download/

Determining Status and Reachability of Network Hosts

Monitoring Services on Down otJnreachable Hosts

The main purpose of Nagios is to monitor services that run on or are provided by physical hosts or
devices on your network. It should be obvious that if a host or device on your network goes down, all
services that it offers will also go down with it. Similarly, if a host becomes unreachable, Nagios will
not be able to monitor the services associated with that host.

Nagios recognizes this fact and attempts to check for such a scenario when there are problems with a
service. Whenever a service check results in a non-OK status level, Nagios will attempt to check and
see if the host that the service is running on is "alive". Typically this is done by pinging the host and
seeing if any response is received. If the host check commmand returns a non-OK state, Nagios
assumes that there is a problem with the host. In this situation Nagios will "silence" all potential alerts
for services running on the host and just notify the appropriate contacts that the host is down or
unreachable. If the host check command returns an OK state, Nagios will recognize that the host is
alive and will send out an alert for the service that is misbehaving.

Local Hosts

"Local" hosts are hosts that reside on the same network segment as the host running Nagios - no
routers or firewalls lay between thdm. Figufe 1 shows an example network layout. Host A is running
Nagios and monitoring all other hosts and routers depicted in the diagram. Hosts B, C, D, E and F are
all considered to be "local" hosts in relation to host A.

The arents option in the host definition for a "local" host should be left blank, as local hosts have
no depencies or "parents"” - that's why they’re local.

Monitoring Local Hosts

Checking hosts that are on your local network is fairly simple. Short of someone accidentally (or
intentially) unplugging the network cable from one of your hosts, there isn’'t too much that can go
wrong as far as checking network connectivity is concerned. There are no routers or external networks
between the host doing the monitoring and the other hosts on the local network.

If Nagios needs to check to see if a local host is "alive" it will simply run the host check command for
that host. If the command returns an OK state, Nagios assumes the host is up. If the command returns
any other status level, Nagios will assume the host is down.

Figure 1.

69

Example Network Layout
Last Modified 5/31/1999

=)
Host H |

Hogt B Hogt ©

Internet ar WARN

Router (Host F)
Host A
Host D Host E = = = Haost J
Router (Host K)
Host L Host
RemoteHosts

"Remote" hosts are hosts that reside on a different network segment than the host running Nagios. In
the figure above, hosts G, H, |, J, K, L and M are all considered to be "remote" hosts in relation to host
A.

Notice that some hosts are "farther away" than others. Hosts H, | and J are one hop further away from
host A than host G (the router) is. From this observation we can construct a host dependency tree as

show below if Figure]2. This tree diagram will help us in deciding how to configure each host in
Nagios.

The<parents> option in the host definition for a "remote" host should be the short name(s) of the
host(s) directly above it in the tree diagram (as show below). For example, the parent host for host H
would be host G. The parent host for host G is host F. Host F has no parent host, since it is on the
network segment as host A - it is a "local" host.

Figure 2.

70

Network Link Heirarchy
Last Madified £/31/1999

Host A, . .
Thiz is the hostwhich runs MetSaint and
monitars all other hosts

gy
= = = = Router (Host F)

Host B Host © HostD HostE

Router (Host k)

HostH Host! HostJd Host L Host b

Monitoring RemoteHosts

Checking the status of remote hosts is a bit more complicated that for local hosts. If Nagios cannot
monitor services on a remote host, it needs to determine whether the remote host is down or whether it
is unreachable. Luckily, theparents> option allows Nagios to do this.

If a host check command for a remote host returns a non-OK state, Nagios will "walk" the depency
tree (as shown in the figure above) until it reaches the top (or until a parent host check results in an OK
state). By doing this, Nagios is able to determine if a service problem is the result of a down host, an
down network link, or just a plain old service failure.

DOWN vs. UNREACHABLE Notification Types

| get lots of email from people asking why Nagios is sending notifications out about hosts that are
unreachable. The answer is because you configured it to do that. If you want to disable UNREACH-
ABLE notifications for hosts, modify theotification_optionsargument of your host definitions to not
include theu (unreachable) option. More information can be fourfd in this|FAQ.

71

Network Outages

Intro duction

The[outages CEl is designed to help pinpoint the cause of network outages. For small networks this
CGI may not be particularly useful, but for larger ones it will be. Pinpointing the cause of outages will
help admins to more quickly find and resolve problems which are causing the biggest impact on the

network.

It should be noted that the outages CGI will not attempt to finebthetcause of the problem, but will
rather locate the hosts on your network which seem to be causing the most problems. Delving into the
problem at a deeper level is left to the user, as there are any number of things which might actually be
the cause of the problem.

Diagrams

The diagrams below help to show how the outages CGI goes about determining the cause of network
outages. You can click on either image for a larger version...

72

Diagram 1

This diagram will serve as the basis for our example. All hosts shows in red are either down or unreachable (from the view of Nagios). All other hosts are up.

Network Outages

Last Modified 02/26/2000

Diagram 2

This diagram pinpoints the causes of the network outages (from the view of Nagios), and shows various groups of hosts which are affected by the outages.

Cause and Effect Of Network Outages

Last Moclified 02/26/2000

Determining The Cause Of NetworkOutages

73

http://nagios.sourceforge.net/docs/2_0/images/network-outage1.png
http://nagios.sourceforge.net/docs/2_0/images/network-outage2.png

So how does the outages CGI determine which hosts are the source of proBlefie?n” hosts
must be either in a DOWN or UNREACHABLE statd at least one of their immediate parent hosts
must be UPHosts which fit this criteria are flagged as being potential problem hosts.

In order to determine whether these flagged hosts are causing network outages, we must performs
some other tests...

If all of the immediate child hosts of one of these flagged hosts is DOWN or UNREACHARLE

has no immediate parent host that is up, the flagged host is the cause of a network outage. If even one
of the immediate children of a flagged host doetpass this test, then the flagged hostosthe

cause of a network outage.

Determining The Effects Of NetworkOutages

Along with telling you what hosts are causing problem on your network, the outages CGI will also tell
you how many hosts and services are affected by a particular problem host. How is this determined?
Take a look at diagram 2 above...

From the diagram it is clear that host 1 is blocking two child hosts (in domain A). Host 2 is solely
responsbile for blocking only itself (domain B) and host 3 is solely responsibly for blocking 7 hosts
(domain C). The outage effects of the two hosts in domain D are "shared" between hosts 2 and 3, since
it is unclear as to which host is actually the cause of the outage. If either host 2 or 3 was UP, the these
hosts might not be blocked.

The numbers of affected hosts for each problem host are as follows (the problem host is also included
in these figures):

® Host 1: 3 affected hosts
® Host 2: 3 affected hosts
® Host 3: 10 affected hosts

Ranking Problems Based OnSeveity Level

The outages CGI will display all problem hosts, whether they are causing network outages or not.
However, the CGlI will tell you how many of the problem hosts (if any) are causing network outages.

In order to display the problem hosts in a somewhat useful manner, they are sorted by the severity of
the effect they are having on the network. The severity level is determined by two things: The number
of hosts which are affected by problem host and the number of services which are affected. Hosts hold
a higher weight than services when it comes to calculating severity. The current code sets this weight
ratio at 4:1 (i.e. hosts are 4 times more important than individual services).

Assuming that all hosts in diagram 2 have an equal number of services associated with them, host 3
would be ranked as the most severe problem, while hosts 1 and 2 would have the same severity level.

74

Notifications

Intro duction

I've had a lot of questions as to exactly how notifications work. This will attempt to explain exactly
when and how host and service notifications are sent out, as well as who receives them.

When Do Noaotifications Occur?

The decision to send out notifications is made in the service check and host check logic. Host and
service notifications occur in the following instances...

® \When a hard state change occurs. More information on state types and hard state changes can be
found[herp.

® \When a host or service remains in a hard non-OK state and the time specified tgtifiea<
tion_interval option in the host or service definition has passed since the last notification was
sent out (for that specified host or service). If you don't like the idea of recurring notifications, set
the <otification_intervak value to O - this prevents notifications from getting sent out more than
once for any given problem.

Who GetsNotified?

Each service definition has @entact_groups option that specifies what contact groups receive noti-
fications for that particular service. Each contact group can contain one or more individual contacts.
When Nagios sends out a service notification, it will notify each contact that is a member of any
contact groups specified in thesntactgroups option of the service definition. Nagios realizes that

any given contact may be a member of more than one contact group, so it removes duplicate contact
notifications before it does anything.

Each host may belong to one or more host groups. Each host groupduareect< groups option

that specifies what contact groups receive notifications for hosts in that particular host group. When
Nagios sends out a host notification, it will notify contacts that are members of all the contact groups
that that should be notified for any and all host groups that the host is a member of. Nagios removes
any duplicate contacts from the notification list before it does anything.

What Filters Must Be Passed In Order ForNotifications To Be Sent?

Just because there is a need to send out a host or service notification doesn’t mean that any contacts
are going to get notified. There are several filters that potential notifications must pass before they are
deemed worthy enough to be sent out. Even then, specific contacts may not be notified if their notifi-
cation filters do not allow for the notification to be sent to them. Let’s go into the filters that have to be
passed in more detalil...

Program-Wide Filter:

The first filter that notifications must pass is a test of whether or not notifications are enabled on a
program-wide basis. This is initially determined by[the enable notifications directive in the main
config file, but may be changed during runtime from the web interface. If notifications are disabled on
a program-wide basis, no host or service notifications can be sent out - period. If they are enabled on a
program-wide basis, there are still other tests that must be passed...

75

Service and HosfFilters:

The first filter for host or service notifications is a check to see if the host or service is in a period of
[scheduled downtinpe. It it is in a scheduled downtingepne gets notified|f it isn’t in a period of

downtime, it gets passed on to the next filter. As a side note, notifications for services are supressed if
the host they’re associated with is in a period of scheduled downtime.

The second filter for host or service notification is a check to see if the host or sdrvice is]flapping (if
you enabled flap detection). If the service or host is currently flappingne gets notified Other-
wise it gets passed to the next filter.

The third host or service filter that must be passed is the host- or service-specific notification options.
Each service definition contains options that determine whether or not natifications can be sent out for
warning states, critical states, and recoveries. Similiarly, each host definition contains options that
determine whether or not notifications can be sent out when the host goes down, becomes unreachable,
or recovers. If the host or service notification does not pass these optans gets notifiedIf it

does pass these options, the notification gets passed to the next filter... Note: Notifications about host
or service recoveries are only sent out if a notification was sent out for the original problem. It doesn’t
make sense to get a recovery notification for something you never knew was a problem.

The fourth host or service filter that must be passed is the time period test. Each host and service defi-
nition has a dotification_period option that specifies which time period contains valid notification

times for the host or service. If the time that the notification is being made does not fall within a valid
time range in the specified time period, one gets contactedf it falls within a valid time range, the
notification gets passed to the next filter... Note: If the time period filter is not passed, Nagios will
reschedule the next notification for the host or service (if its in a non-OK state) for the next valid time
present in the time period. This helps ensure that contacts are notified of problems as soon as possible
when the next valid time in time period arrives.

The last set of host or service filters is conditional upon two things: (1) a notification was already sent
out about a problem with the host or service at some point in the past and (2) the host or service has
remained in the same non-OK state that it was when the last notification went out. If these two criteria
are met, then Nagios will check and make sure the time that has passed since the last notification went
out either meets or exceeds the value specified byrtbgfication_intervak option in the host or

service definition. If not enough time has passed since the last notificatione gets contactedf

either enough time has passed since the last notification or the two criteria for this filter were not met,
the notification will be sent out! Whether or not it actually is sent to individual contacts is up to

another set of filters...

Contact Filters:

At this point the notification has passed the program mode filter and all host or service filters and
Nagios starts to notify all the people it shguld. Does this mean that each contact is going to receive the
notification? No! Each contact has their own set of filters that the notification must pass before they
receive it. Note: Contact filters are specific to each contact and do not affect whether or not other
contacts receive notifications.

The first filter that must be passed for each contact are the notification options. Each contact definition
contains options that determine whether or not service notifications can be sent out for warning states,
critical states, and recoveries. Each contact definition also contains options that determine whether or
not host notifications can be sent out when the host goes down, becomes unreachable, or recovers. If
the host or service notification does not pass these optienspntact will not be notified If it does

76

pass these options, the notification gets passed to the next filter... Note: Notifications about host or
service recoveries are only sent out if a notification was sent out for the original problem. It doesn’t
make sense to get a recovery natification for something you never knew was a problem...

The last filter that must be passed for each contact is the time period test. Each contact definition has a
<notification_period option that specifies which time period contains valid notification times for the
contact. If the time that the notification is being made does not fall within a valid time range in the
specified time periodhe contact will not be notified If it falls within a valid time range, the contact

gets notified!

What Aren’t Any Notification Methods Incor porated Directly Into Nagios?

I've gotten several questions about why natification methods (paging, etc.) are not directly incorpo-
rated into the Nagios code. The answer is simple - it just doesn’'t make much sense. The "core" of
Nagios is not designed to be an all-in-one application. If service checks were embedded in Nagios'’
core it would be very difficult for users to add new check methods, modify existing checks, etc. Notifi-
cations work in a similiar manner. There are a thousand different ways to do notifications and there are
already a lot of packages out there that handle the dirty work, so why re-invent the wheel and limit
yourself to a bike tire? Its much easier to let an external entity (i.e. a simple script or a full-blown
messaging system) do the messy stuff. Some messaging packages that can handle notifications for
pagers and cellphones are listed below in the resource section.

Notification Type Macro

When crafting your notification commands, you need to take into account what type of notification is
occurring. Th¢ SNOTIFICATIONTYPE$ macro contains a string that identifies exactly that. The table
below lists the possible values for the macro and their respective descriptions:

Value Description

A service or host has just entered (or is still in) a problem state. If this is
a service notification, it means the service is either in a WARNING,
UNKNOWN or CRITICAL state. If this is a host notification, it meanis
the host is in a DOWN or UNREACHABLE state.

PROBLEM

A service or host recovery has occurred. If this is a service natificatjon,
RECOVERY it means the service has just returned to an OK state. If it is a host potifi-
cation, it means the host has just returned to an UP state.

This notification is an acknowledgement notification for a host or
ACKNOWLEDGEMENT | service problem. Acknowledgement notifications are initiated via th
web interface by contacts for the particular host or service.

(D

FLAPPINGSTART The host or service has just statted flapping.
FLAPPINGSTOP The host or service has just stopped flagping.

Helpful Resources

There are many ways you could configure Nagios to send notifications out. Its up to you to decide
which method(s) you want to use. Once you do that you'll have to install any necessary software and
configure notification commands in your config files before you can use them. Here are just a few
possible notification methods:

7

O O O O OO0 O

O
O
O

O O O O

Email

Pager

Phone (SMS)

WinPopup message

Yahoo, ICQ, or MSN instant message
Audio alerts

etc...

Basically anything you can do from a command line can be tailored for use as a notification command.

If you're interested in sending an alphanumeric notification to your pager or cellphone via email, you
may be find the following information useful. Here are a few links to various messaging service
providers’ websites that contain information on how to send alphanumeric messages to pagers and
phones...

[AT&T Wireless
[PageNdgt
SprintPC$ (SMS phones)

If you're looking for an alternative to using email for sending messages to your pager or cellphone,
check out these packages. They could be used in conjuction with Nagios to send out a notification via
a modem when a problem arises. That way you don’t have to rely on email to send notifications out
(remember, email may *not* work if there are network problems). | haven't actually tried these pack-
ages myself, but others have reported success using them...

(SMS software for contacting Nokia phones via GSM network)

(alphanumeric pager software)
[Sendpade (paging software)
SMS Client (command line utility for sending messages to pagers and mobile phones)

If you want to try out a non-traditional method of notification, you might want to mess around with
audio alerts. If you want to have audio alerts played on the monitoring server (with synthesized
speech), check o[t Festival. If you'd rather leave the monitoring box alone and have audio alerts
played on another box, check outthe Network Audio System (NA$) andl rplay projects.

Lastly, there in an area in the contrib downloads section @n the Nagios homepage for notification
scripts that have been contributed by users. You might find these scripts useful, as they take care of a
lot of the dirty work needed to send out alphanumeric notifications...

78

http://www.attwireless.com/smallbusiness/services/emailmsg/entpaging.jhtml
http://www.pagenet.com/sendamessage/emailpage.asp
http://www.messaging.sprintpcs.com/sms_help/send_email.html
http://www.gnokii.org/
http://www.qpage.org/
http://sendpage.cpoint.net/
http://www.styx.demon.co.uk/
http://www.cstr.ed.ac.uk/projects/festival/
http://radscan.com/nas.html
http://rplay.doit.org/
http://www.nagios.org/

Plugin Theory

Intro duction

Unlike many other monitoring tools, Nagios does not include any internal mechanisms for checking
the status of services, hosts, etc. Instead, Nagios relies on external programs (called plugins) to do the
all the dirty work. Nagios will execute a plugin whenever there is a need to check a service or host that
is being monitored. The plugin dossmethingnotice the very general term) to perform the check and
then simply returns the results to Nagios. Nagios will process the results that it receives from the
plugin and take any necessary actions (rurning event hgndlers, sendling out notfications, etc).

The image below show how plugins are separated fromt the core program logic in Nagios. Nagios
executes the plugins which then check local or remote resources or services of some type. When the
plugins have finished checking the resource or service, they simply pass the results of the check back
to Nagios for processing. A more complex diagram on how plugins work can be found in the docu-
mentation o passive service checks.

Local Resource or
Service

JRemote Resource
or Service

Local Host Remote Host

The Upside

The good thing about the plugin architecture is that you can monitor just about anything you can think
of. If you can automate the process of checking something, you can monitor it with Nagios. There are
already a lot of plugins that have been created in order to monitor basic resources such as processor
load, disk usage, ping rates, etc. If you want to monitor something else, take a look at the documenta-

tion on[writing plugink and roll your own. Its simple!

The Downside

The only real downside to the plugin architecture is the fact that Nagios has absolutely no idea what it
is that you’re monitoring. You could be monitoring network traffic statistics, data error rates, room
temperate, CPU voltage, fan speed, processor load, disk space, or the ability of your super-fantastic
toaster to properly brown your bread in the morning... As such, Nagios cannot produce graphs of
changes to the exact values of resources you’re monitoring over time. It can only track changes in the
stateof those resources. Only the plugins themselves know exactly what they’re monitoring and how

to perform checks. However, plugins can return optional performange data along with status informa-
tion. This performance data can then be passed on to external applications which could produce graphs
of service-specific information (i.e. disk space usage, processor load, etc.). More information on
performance data can be fo ere.

79

Using Plugins For ServiceChecks

The correlation between plugins and service checks should be fairly obvious. When Nagios needs to
check the status of a particular service that you have defined, it will execute the plugin you specified in
the <check_commarndargument of the service definition. The plugin will check the status of the

service or resource you specify and return the results to Nagios.

Using Plugins For HostChecks

Using plugins to check the status of hosts may be a bit more difficult to understand. In each host defi-
nition you use thekost_check _commandirgument to specify a plugin that should be executed to

check the status of the host. Host checks are not performed on a regular basis - they are executed only
as needed, usually when there are problems with one or more services that are associated with the host.

Host checks can use the same plugins as service checks. The only real difference is the important of
the plugin results. If a plugin that is used for a host check results in a non-OK status, Nagios will
believe that the host is down.

In most situations, you’ll want to use a plugin which checks to see if the host can be pinged, as this is
the most common method of telling whether or not a host is up. However, if you were monitoring

some kind of super-fantastic toaster, you might want to use a plugin that would check to see if the
heating elements turned on when the handle was pushed down. That would give a decent indication as
to whether or not the toaster was "alive".

80

Service Check Scheduling

Index

[Introduction
Configuration optiors

Initial schedulin
Inter-check deldy

[Service interleavidg

[Max concurrent service chetks
Time restraints
Normal scheduling
Scheduling during probleins
Host checlks
Scheduling delays

Scheduling examgle

Service definition options that affect scheddling

Intro duction

I've gotten a lot of questions regarding how service checks are scheduled in certain situations, along
with how the scheduling differs from when the checks are actually executed and their results are
processed. I'll try to go into a little more detail on how this all works...

Configuration Options

Before we begin, there are several configuration options that affect how service checks are scheduled,
executed, and processed. For starters, each service definition contains three options that determine
when and how each specific service check is scheduled and executed. Those three options include:

e normal_check_interval
® retry_check_interval
® check_period

There are also four configuration options in|the main configuratign file that affect service checks.
These include:

[inter check delay method
|service interleave factor
[max_concurrent_chedks
[service reaper frequency

We’'ll go into more detail on how all these options affect service check scheduling as we progress.
First off, let's see how services are initially scheduled when Nagios first starts or restarts...

Initial Scheduing

When Nagios (re)starts, it will attempt to schedule the initial check of all services in a manner that will
minimize the load imposed on the local and remote hosts. This is done by spacing the initial service
checks out, as well as interleaving them. The spacing of service checks (also known as the inter-check
delay) is used to minimize/equalize the load on the local host running Nagios and the interleaving is

81

used to minimize/equalize load imposed on remote hosts. Both the inter-check delay and interleave
functions are discussed below.

Even though service checks are initially scheduled to balance the load on both the local and remote
hosts, things will eventually give in to the ensuing chaos and be a bit random. Reasons for this include
the fact that services are not all checked at the same interval, some services take longer to execute than
others, host and/or service problems can alter the timing of one or more service checks, etc. At least

we try to get things off to a good start. Hopefully the initial scheduling will keep the load on the local

and remote hosts fairly balanced as time goes by...

Note: If you want to view the initial service check scheduling information, start Nagios usirg the
command line option. Doing so will display basic scheduling information (inter-check delay, inter-

leave factor, first and last service check time, etc) and will create a new status log that shows the exact
time that all services are initially scheduled. Because this option will overwrite the status log, you
should not use it when another copy of Nagios is running. Nagiosxdbstart monitoring anything

when this argument is used.

Inter-Check Delay

As mentioned before, Nagios attempts to equalize the load placed on the machine that is running
Nagios by equally spacing out initial service checks. The spacing between consecutive service checks
is called the inter-check delay. By giving a value td the inter_check delay ethod variable in the
main config file, you can modify how this delay is calculated. | will discuss how the "smart" calcula-
tion works, as this is the setting you will want to use for normal operation.

When using the "smart" setting of timiéer_check_delay_methathriable, Nagios will calculate an
inter-check delay value by using the following calculation:

inter-check delay = (average check interval for all services) / (total number of services)

Let’s take an example. Say you have 1,000 services that each have a normal check interval of 5
minutes (obviously some services are going to be checked at different intervals, but let's look at an
easy case...). The total check interal time for all services is 5,000 (1,000 * 5). That means that the
average check interval for each service is 5 minutes (5,000 / 1,000). Give that information, we realize
that (on average) we need to re-check 1,000 services every 5 minutes. This means that we should use
an inter-check delay of 0.005 minutes (0.3 seconds) when spacing out the initial service checks. By
spacing each service check out by 0.3 seconds, we can somewhat guarantee that Nagios is scheduling
and/or executing 3 new service checks every second. By spacing the checks out evenly over time like
this, we can hope that the load on the local server that is running Nagios remains somewhat balanced.

Service I nterleaving

As discussed above, the inter-check delay helps to equalize the load that Nagios imposes on the local
host. What about remote hosts? Is it necessary to equalize load on remote hosts? Why? Yes, it is
important and yes, Nagios can help out with this. Equalizing load on remote hosts is especially impor-
tant with the advent ¢f service check parallelizgtion. If you monitor a large number of services on a
remote host and the checks were not spread out, the remote host might think that it was the victim of a
SYN attack if there were a lot of open connections on the same port. Plus, attempting to equalize the
load on hosts is just a nice thing to do...

82

By giving a value to tHe service_Interleave fgctor variable in the main config file, you can modify how
the interleave factor is calculated. I will discuss how the "smart" calculation works, as this will proba-
bly be the setting you will want to use for normal operation. You can, however, use a pre-set interleave
factor instead of having Nagios calculate one for you. Also of note, if you use an interleave factor of 1,
service check interleaving is basically disabled.

When using the "smart" setting of the service_interleave_factor variable, Nagios will calculate an
interleave factor by using the following calculation:

interleave factor = ceil (total number of services / total number of hosts)

Let's take an example. Say you have a total of 1,000 services and 150 hosts that you monitor. Nagios
would calculate the interleave factor to be 7. This means that when Nagios schedules initial service
checks it will schedule the first one it finds, skip the next 6, schedule the next one, and so on... This
process will keep repeating until all service checks have been scheduled. Since services are sorted
(and thus scheduled) by the name of the host they are associated with, this will help with minimiz-
ing/equalizing the load placed upon remote hosts.

The images below depict how service checks are scheduled when they are not interleaved
(service_interleave_factor=1) and when they are interleaved with the service_interleave_factor vari-
able equal to 4.

NorvIteraver Chesks.

Maximum Concurrent Service Checks

In order to prevent Nagios from consuming all of your CPU resources, you can restrict the maximum
number of concurrent service checks that can be running at any given time. This is controlled by using
thelmax _concurrent_chegks option in the main config file.

83

http://nagios.sourceforge.net/docs/2_0/images/noninterleaved1.png
http://nagios.sourceforge.net/docs/2_0/images/interleaved1.png
http://nagios.sourceforge.net/docs/2_0/images/noninterleaved2.png
http://nagios.sourceforge.net/docs/2_0/images/interleaved2.png
http://nagios.sourceforge.net/docs/2_0/images/interleaved3.png

The good thing about this setting is that you can regulate Nagios’ CPU usage. The down side is that
service checks may fall behind if this value is set too low. When it comes time to execute a service
check, Nagios will make sure that no more than x service checks are either being executed or waiting
to have their results processed (where x is the number of checks you specified for the max_concur-
rent_checks option). If that limit has been reached, Nagios will postpone the execution of any pending
checks until some of the previous checks have completed. So how does one determine a reasonable
value for the max_concurrent_checks option?

First off, you need to know the following things...

® The inter-check delay that Nagios uses to initially schedule service checks (tsssothenand
line argument to check this)

® The frequency (in seconds) of service reaper events, as specified by the service reaper [frequency
variable in the main config file.

® A general idea of the average time that service checks actually take to execute (most plugins
timeout after 10 seconds, so the average is probably going to be lower)

Next, use the following calculation to determine a reasonable value for the maximum number of
concurrent checks that are allowed...

max. concurrent checks = ceil(max(service reaper frequency , average check execution time) /
inter-check delay)

The calculated number should provide a reasonable starting point for the max_concurrent_checks
variable. You may have to increase this value a bit if service checks are still falling behind schedule or
decrease it if Nagios is hogging too much CPU time.

Let's say you are monitoring 875 services, each with an average check interval of 2 minutes. That
means that your inter-check delay is going to be 0.137 seconds. If you set the service reaper frequency
to be 10 seconds, you can calculate a rough value for the max. number of concurrent checks as follows
(''assume that the average execution time for service checks is less than 10 seconds) ...

max. concurrent checks = ceil(10/ 0.137)

In this case, the calculated value is going to be 73. This makes sense because (on average) Nagios are
going to be executing just over 7 new service checks per second and it only processes service check
results every 10 seconds. That means at given time there will be a just over 70 service checks that are
either being executed or waiting to have their results processed. In this case, | would probably recom-
mend bumping the max. concurrent checks value up to 80, since there will be delays when Nagios
processes service check results and does its other work. Obviously, you're going to have test and
tweak things a bit to get everything running smoothly on your system, but hopefully this provided some
general guidelines...

Time Restraints

The check_period option determines[the time pkriod during which Nagios can run checks of the
service. Regardless of what status a particular service is in, if the time that it is actually executed is
not a vaid time within the time period that has been specified, the check will not be executed. Instead,
Nagios will reschedule the service check for the next valid time in the time period. If the check can be
run (e.g. the time is valid within the time period), the service check is executed.

84

Note: Even though a service check may not be able to be executed at a given time, Nagios may still
schedule it to be run at that time. This is most likely to happen during the initial scheduling of services,
although it may happen in other instances as well. This does not mean that Nagios will execute the
check! When it comes time to actually execute a service check, Nagios will verify that the check can be
run at the current time. If it cannot, Nagios will not execute the service check, but will instead just
reschedule it for a later time. Don't let this one throw you confuse you! The scheduling and execution
of service checks are two distinctly different (although related) things.

Normal Scheduling

In an ideal world you wouldn’t have network problems. But if that were the case, you wouldn’t need a
network monitoring tool. Anyway, when things are running smoothly and a service is in an OK state,
we’ll call that "normal”. Service checks are normally scheduled at the frequency specified by the
check_interval option. That’s it. Simple, huh?

Scheduling During Problems

So what happens when there are problems with a service? Well, one of the things that happens is the
service check scheduling changes. If you've configured the max_attempts option of the service defini-
tion to be something greater than 1, Nagios will recheck the service before deciding that a real
problem exists. While the service is being rechecked (up to max_attempts times) it is considered to be
in a "soft" state (as describfd hkre) and the service checks are rescheduled at a frequency determined
by the retry_interval option.

If Nagios rechecks the service max_attempts times and it is still in a non-OK state, Nagios will put the
service into a "hard" state, send out notifications to contacts (if applicable), and start rescheduling
future checks of the service at a frequency determined by the check_interval option.

As always, there are exceptions to the rules. When a service check results in a non-OK state, Nagios
will check the host that the service is associated with to determine whether or not is up (see the note

for info on how this is done). If the host is not up (i.e. it is either down or unreachable), Nagios

will immediately put the service into a hard non-OK state and it will reset the current attempt number

to 1. Since the service is in a hard non-OK state, the service check will be rescheduled at the normal

frequency specified by the check_interval option instead of the retry_interval option.

Host Checks

Unlike service checks, host checks are not scheduled on a regular basis. Instead they are run on
demand, as Nagios sees a need. This is a common question asked by users, so it needs to be clarified.

One instance where Nagios checks the status of a host is when a service check results in a non-OK
status. Nagios checks the host to decide whether or not the host is up, down, or unreachable. If the
first host check returns a non-OK state, Nagios will keep pounding out checks of the host until either
(a) the maximum number of host checks (specified by the max_attempts option in the host definition) is
reached or (b) a host check results in an OK state.

Also of note - when Nagios is check the status of a host, it holds off on doing anything else (executing
new service checks, processing other service check results, etc). This can slow things down a bit and
cause pending service checks to be delayed for a while, but it is necessary to determine the status of
the host before Nagios can take any further action on the service(s) that are having problems.

85

Scheduling Delays

It should be noted that service check scheduling and execution is done on a best effort basis. Individ-
ual service checks are considered to be low priority events in Nagios, so they can get delayed if high
priority events need to be executed. Examples of high priority events include log file rotations, exter-

nal command checks, and service reaper events. Additionally, host checks will slow down the execu-
tion and processing of service checks.

Scheduling Example

The scheduling of service checks, their execution, and the processing of their results can be a bit diffi-
cult to understand, so let's look at a simple example. Look at the diagram below - I'll referto it as |
explain how things are done.

Image 5.
Service Check Timing
E1 Ez Ea Ed» Es Legend:
: (I : 1 ; : 1 - X = Service reaper event
Time > Ll L L L A = Scheduled time for service check
| | | | | B = Actual time for service check
A B C D E C = Service check completion
- _, D = Check results processed

il E = Mext scheduled service check
check_intarval

First off, theX,, events are service reaper events that are scheduled at a frequency specified by the
[service reaper frequency option in the main config file. Service reaper events do the work of gather-
ing and processing service check results. They serve as the core logic for Nagios, kicking off host
checks, event handlers and notifications as necessary.

For the example here, a service has been scheduled to be executedfatHiomever, Nagios got
behind in its event queue, so the check was not actually executed uri] fiime service check
finished executing at tim@, so the difference between poiGtandB is the actual amount of time
that the check was running.

The results of the service check are not processed immediately after the check is done executing.
Instead, the results are saved for later processing by a service reaper event. The next service reaper
event occurs at tim@, so that is approximately the time that the results are processed (the actual time
may be later tha® since other service check results may be processed before this one).

At the time that the service reaper event processes the service check results, it will reschedule the next
service check and place it into Nagios’ event queue. We'll assume that the service check resulted in an
OK status, so the next check at tilhes scheduled after the originally scheduled check time by a

length of time specified by the check_interval option. Note that the service is not rescheduled based off
the time that it was actually executed! There is one exception to this (isn’'t there always?) - if the time
that the service check is actually executed (p®)raccurs after the next service check time (pBint

Nagios will compensate by adjusting the next check time. This is done to ensure that Nagios doesn’'t go
nuts trying to keep up with service checks if it comes under heavy load. Besides, what's the point of
scheduling something in the past...?

86

Service Definition Options That Affect Scheduling

Each service definition contains a normal_check_interval and retry_check_interval option. Hopefully
this will clarify what these two options do, how they relate to the max_check_attempts option in the
service definition, and how they affect the scheduling of the service.

First off, the normal_check_interval option is the interval at which the service is checked under
"normal” circumstances. "Normal" circumstances mean whenever the service is in an OK state or
when its in non-OK state.

When a service first changes from an OK state to a non-OK state, Nagios gives you the ability to
temporarily slow down or speed up the interval at which subsequent checks of that service will occur.
When the service first changes state, Nagios will perform up to max_check_attempts-1 retries of the
service check before it decides its a real problem. While the service is being retried, it is scheduled
according to the retry_check_interval option, which might be faster or slower than the normal
normal_check_interval option. While the service is being rechecked (up to max_check_attempts-1
times), the service is ina soft sfate. If the service is rechecked max_check_attempts-1 times and it is
still in a non-OK state, the service turns intp a hard tate and is subsequently rescheduled at the
normal rate specified by the check_interval option.

On a side note, it you specify a value of 1 for the max_check_attempts option, the service will not ever
be checked at the interval specified by the retry _check interval option. Instead, it immediately turns
into alhard state and is subsequently rescheduled at the rate specified by the normal_check_interval
option.

87

State Types

Intro duction

The current state of services and hosts is determined by two components: the status of the service or
host (i.e. OK, WARNING, UP, DOWN, etc.) and ttypeof state it is in. There are two state types in
Nagios - "soft" states and "hard" states. State types are a crucial part of Nagios’ monitoring logic. They
are used to determine when event handlers are executed and when notifications are sent out.

Service and Host CheclRetries

In order to prevent false alarms, Nagios allows you to define how many times a service or host check
will be retried before the service or host is considered to have a real problem. The maximum number
of retries before a service or host check is considered to have a real problem is controlled by the
<max_check)attemptoption in the service and host definitions, respectively. Depending on what
attempt a service or host check is currently on determines what type of state it is is. There are a few
exceptions to this in the service monitoring logic, but we’ll ignore those for now. Let’s take a look at
the different service state types...

Soft States
Soft states occur for services and hosts in the following situations...

® When a service or host check results in a non-OK state and it has not yet been (re)checked the
number of times specified by thenax_check_attemptoption in the service or host definition.
Let’s call this a soft error state...

® \When a service or host recovers from a soft error state. This is considered to be a soft recovery.

Soft StateEvents

What happens when a service or host is in a soft error state or experiences a soft recovery?

® The soft error or recovery is logged if you enabled the log service Jretries or log host retries
options in the main configuration file.

e [Event handlefs are executed (if you defined any) to handle the soft error or recovery for the
service or host. (Before any event handler is executeHRESTSTATETYPES or
$SERVICESTATETYPE$ is set toSOFT").

® Nagios doesot send out notifications to any contacts because there is (or was) no "real" problem
with the service or host.

As can be seen, the only important thing that really happens during a soft state is the execution of
event handlers. Using event handlers can be particularly useful if you want to try and proactively fix a
problem before it turns into a hard state. More information on event handlers can He found here.

Hard States
Hard states occur faervicesn the following situations (hard host states are discussed later)...

® \When a service check results in a non-OK state and it has been (re)checked the number of times
specified by the max_check_attemptoption in the service definition. This is a hard error state.
® \When a service recovers from a hard error state. This is considered to be a hard recovery.

88

® \When a service check results in a non-OK state and its corresponding host is either DOWN or
UNREACHABLE. This is an exception to the general monitoring logic, but makes perfect sense.
If the host isn’t up why should we try and recheck the service?

Hard states occur farostsin the following situations...

® When a host check results in a non-OK state and it has been (re)checked the number of times
specified by the max_check_attemptsption in the host definition. This is a hard error state.
® \When a host recovers from a hard error state. This is considered to be a hard recovery.

Hard State Changes

Before | discuss what happens when a host or service is in a hard state, you need to know about hard
state changes. Hard state changes occur when a service or host...

® changes from a hard OK state to a hard non-OK state

e changes from a hard non-OK state to a hard OK-state

e changes from a hard non-OK state of some kind to a hard non-OK state of another kind (i.e. from
a hard WARNING state to a hard UNKNOWN state)

Hard State Events

What happens when a service or host is in a hard error state or experiences a hard recovery? Well, that
depends on whether or not a hard state change (as described above) has occurred.

If a hard state change has occuraedthe service or host is in a non-OK state the following things
will occur..

® The hard service or host problem is logged.

e [Event handlefs are executed (if you defined any) to handle the hard problem for the service or
host. (Before any event handler is executed$th®@STSTATETYPES$ or $SERVICESTATE-
TYPES$[macrd is set toHARD").

® Contacts will be notified of the service or host problem (if the notification|logic allows it).

If a hard state change has occuraedthe service or host is in an OK state the following things will
occur..

® The hard service or host recovery is logged.

e [Event handlefs are executed (if you defined any) to handle the hard recovery for the service or
host. (Before any event handler is executed$th@STSTATETYPES$ or $SERVICESTATE-
TYPES$[macrd is set toHARD").

® Contacts will be notified of the service or host recovery (if the notification|logic allows it).

If a hard state change has NOT occuardthe service or host is in a non-OK state the following
things will occur..

e Contacts will be re-notified of the service or host problem (if the notification| logic allows it).

If a hard state change has NOT occuardthe service or host is in an OK state nothing happens.
This is because the service or host is in an OK state and was the last time it was checked as well.

89

90

Time Periods

or...
“Is This a Good Time?"

Intro duction

Time periods allow you to have greater control over when service checks may be run, when host and
service notifications may be sent out, and when contacts may receive notifications. With this newly
added power come some potential problems, as | will describe later. | was initially very hesitant to
introduce time periods because of these snafus. I'll leave it up to you to decide what it right for your
particular situation...

How Time Periods Work With ServiceChecks

Without the implementation of time periods, Nagios would monitor all services that you had defined
24 hours a day, 7 days a week. While this is fine for most services that need monitoring, it doesn’t
work out so well for others. For instance, do you really need to monitor printers all the time when
they're really only used during normal business hours? Perhaps you have development servers which
you would prefer to have up, but aren’t "mission critical" and therefore don't have to be monitored for
problems over the weekend. Time period definitions now allow you to have more control over when
such services may be checked...

The <check_period argument of each service definition allows you to specify a time period that tells
Nagios when the service can be checked. When Nagios attempts to reschedule a service check, it will
make sure that the next check falls within a valid time range within the defined time period. If it
doesn’t, Nagios will adjust the next service check time to coincide with the next "valid" time in the
specified time period. This means that the service may not get checked again for another hour, day, or
week, etc.

Potertial ProblemsWith Service Checks

If you use time periods which do not cover a 24x7 rangewjibuiun into problems, especially if a
service (or its corresponding host) is down when the check is delayed until the next valid time in the
time period. Here are some of those problems...

1. Contacts will not get re-notified of problems with a service until the next service check can be
run.

2. If a service recovers during a time that has been excluded from the check period, contacts will not
be notified of the recovery.

3. The status of the service will appear unchanged (in the status log and CGI) until it can be checked
next.

4. If all services associated with a particular host are on the same check time period, host problems
or recoveries will not be recognized until one of the services can be checked (and therefore notifi-
cations may be delayed or not get sent out at all).

Limiting the service check period to anything other than a 24 hour a day, 7 days a week basis can
cause a lot of problems. Well, not really problems so much as annoyances and inaccuracies... Unless
you have good reason to do so, | wostisonglysuggest that you set theheck_periog argument of

each service definition to a "24x7" type of time period.

91

How Time Periods Work With Contact Notifications

Probably the best use of time periods is to control when notifications can be sent out to contacts. By
using the service_notification_periceand $ost_notification_period arguments in contact defini-

tions, you're able to essentially define an "on call" period for each contact. Note that you can specify
different time periods for host and service notifications. This is helpful if you want host notifications

to go out to the contact any day of the week, but only have service notifications get sent to the contact
on weekdays. It should be noted that these two notification periods shouldnguanethat the

contact can be notified. You can control notification times for specific services and hosts on a
one-by-one basis as follows...

By setting the gotification_period argument of the host definition, you can control when Nagios is
allowed to send notifications out regarding problems or recoveries for that host. When a host notifica-
tion is about to get sent out, Nagios will make sure that the current time is within a valid range in the
<notification_period time period. If it is a valid time, then Nagios will attempt to notify each contact

of the host problem. Some contacts may not receive the host notification iftibetr rotifica-

tion_period does not allow for host notifications at that time. If the timeisvalid within the foti-
fication_period defined for the host, Nagios will not send the notification oantocontacts.

You can control notification times for services in a similiar manner to host notification times. By
setting the gotification_period argument of the service definition, you can control when Nagios is
allowed to send notifications out regarding problems or recoveries for that service. When a service
notification is about to get sent out, Nagios will make sure that the current time is within a valid range
in the <notification_period time period. If it is a valid time, then Nagios will attempt to notify each
contact of the service problem. Some contacts may not receive the service notification if their
<svc_notification_period does not allow for service notifications at that time. If the tinmoisalid

within the <notification_period defined for the service, Nagios will not send the notification out to

any contacts.

Potertial Problems With Contact Notifications

There aren’t really any major problems that you'll run into with using time periods to create custom
contact notification times. You do, however, need to be aware that contacts may not always be notified
of a service or host problem or recovery. If the time isn’t right for both the host or service natification
period and the contact notification period, the notification won’t go through. Once you weigh the
potential problems of time-restricted notifications against your needs, you should be able to come up
with a configuration that works well for your situation.

Conclusion

Time periods allow you to have greater control of how Nagios performs its monitoring and notification
functions, but can lead to problems. If you are unsure of what type of time periods to implement, or if

you are having problems with your current implementation, | would suggest using "24x7" time periods
(where all times are valid for each day of the week). Feel free to contact me if you have questions or

are running into problems.

92

Event Handlers

Intro duction

Event handlers are optional commands that are executed whenever a host or service state change
occurs. An obvious use for event handlers (especially with services) is the ability for Nagios to proac-
tively fix problems before anyone is notified. Another potential use for event handlers might be to log
service or host events to an external database.

Event Handler Types

There are two main types of event handlers than can be defined - service event handlers and host event
handlers. Event handler commands are (optionally) defined in each host and service definition.

Because these event handlers are only associated with particular services or hosts, | will call these
"local" event handlers. If a local event handler has been defined for a service or host, it will be

executed when that host or service changes state.

You may also specify global event handlers that should be r@véoyhost or service state change by
using the global host event hanflerjand global service event handler options in your main configu-
ration file. Global event handlers are run immediapelgr to running a local service or host event
handler.

When Are Event Handler CommandsExecuted?

Service and host event handler commands are executed when a service or host:

® isin a "soft" error state
e initially goes into a "hard" error state
® recovers from a "soft" or "hard" error state

What are "soft" and "hard" states you ask? They are desEribéd here .

Event Handler Execuion Order

Global event handlers are executed before any local event handlers that you have configured for
specific hosts or services.

Writing Event Handler Commands

In most cases, event handler commands will be shell or perl scripts. At a minimum, the scripts should
take the following macrds as arguments:

Service event handler macr&SERVICESTATES, $SERVICESTATETYPES$, $SERVICEAT-
TEMPTS$
Host event handler macrdHOSTSTATES, SHOSTSTATETYPES, $SHOSTATTEMPTS$

The scripts should examine the values of the arguments passed in and take any necessary action based
upon those values. The best way to understand how event handlers should work is to see and example.
Lucky for you, one is providdd belpw. There are also some sample event handler scripts included in

the eventhandlers/subdirectory of the Nagios distribution. Some of these sample scripts demonstrate

the use of external commands to implement redundant monitoring hosts.

93

PermissionsFor Event Handler Commands

Any event handler commands you configure will execute with the same permissions as the user under
which Nagios is running on your machine. This presents a problem with scripts that attempt to restart
system services, as root privileges are generally required to do these sorts of tasks.

Ideally you should evaluate the types of event handlers you will be implementing and grant just

enough permissions to the Nagios user for executing the necessary system commands. You might want
to try usind sudo to accomplish this. Implementation of this is your job, so read the docs and decide if
its what you need.

Debuming Event Handler Commands

When you are debugging event handler commands, | would highly recommend that you enable
logging of| service retrigp, host retiies, and event handler commands. All of these logging options are
configured in th¢ main configuration file. Enabling logging for these options will allow you to see
exactly when and why event handler commands are being executed.

When you're done debugging your event handler commands you'll probably want to disable logging
of service and host retries. They can fill up your log file fast, but if you have epabled log yotation you
might not care.

Service Event HandlerExample

The example below assumes that you are monitoring the HTTP server on the local machine and have
specifiedrestart-httpd as the event handler command for the HTTP service definition. Also, | will be
assuming that you have set the <max_check_attempts> option for the service to be a value of 4 or
greater (i.e. the service is checked 4 times before it is considered to have a real problem). An example
service definition (w/ only the fields we discuss) might look like this...

define service{

host_name somehost
service_description HTTP
max_check_attempts 4
event_handler restart-httpd

...other service variables...

}

Once the service has been defined with an event handler, we must define that event handler as a
command. Notice the macros in the command line that | am passing to the event handler - these are
important!

define command{
command_name restart-httpd
command_line /usr/local/nagios/libexec/eventhandlers/restart-httpd $SERVICESTATES$ $SERVICESTATETYPES$ $SERVICEATTEMPTS
}

Now, let's actually write the event handler script (this is/tlee/local/nagios/libexec/even-
thandlers/restart-httpd file).

94

http://www.courtesan.com/sudo/sudo.html

#1/bin/sh

#

Event handler script for restarting the web server on the local machine
#

Note: This script will only restart the web server if the service is

retried 3 times (in a "soft" state) or if the web service somehow

manages to fall into a "hard" error state.

#

What state is the HTTP service in?

case "$1"in

OK)

The service just came back up, so don’t do anything...

WARNING)
We don't really care about warning states, since the service is probably still running...

UNKNOWN)
We don’t know what might be causing an unknown error, so don’t do anything...

CRITICAL)
Aha! The HTTP service appears to have a problem - perhaps we should restart the server...

|s this a "soft" or a "hard" state?
case "$2"in

We're in a "soft" state, meaning that Nagios is in the middle of retrying the
check before it turns into a "hard" state and contacts get notified...
SOFT)

What check attempt are we on? We don’t want to restart the web server on the first
check, because it may just be a fluke!
case "$3"in

Wait until the check has been tried 3 times before restarting the web server.
If the check fails on the 4th time (after we restart the web server), the state
type will turn to "hard" and contacts will be notified of the problem.

Hopefully this will restart the web server successfully, so the 4th check will
result in a "soft" recovery. If that happens no one gets notified because we
fixed the problem!

3)

echo -n "Restarting HTTP service (3rd soft critical state)..."

Call the init script to restart the HTTPD server

[etc/rc.d/init.d/httpd restart

esac

”

The HTTP service somehow managed to turn into a hard error without getting fixed.
It should have been restarted by the code above, but for some reason it didn't.
Let’s give it one last try, shall we?

Note: Contacts have already been notified of a problem with the service at this
point (unless you disabled notifications for this service)

HARD)

echo -n "Restarting HTTP service..."

Call the init script to restart the HTTPD server

[etc/rc.d/init.d/httpd restart

esac

esac

exit 0

The sample script provided above will attempt to restart the web server on the local machine in two
different instances - after the HTTP service is being retried for the 3rd time (in an "soft" error state)
and after the service falls into a "hard" state. The "hard" state situation shouldn’t really occur, since the

script should restart the service when its still in a "soft" state (i.e. the 3rd check retry), but its left as a
fallback anyway.

95

It should be noted that the service event handler will only be execute the first time that the service falls
into a "hard" state. This will prevent Nagios from continuously executing the script to restart the web
server when it is in a "hard" state.

96

External Commands

Intro duction

Nagios can process commands from external applications (including CGls -[see the command CGlI for
an example) and alter various aspects of its monitoring functions based on the commands it receives.

Enabling External Commands

By default, Nagiosloes notheck for or process any external commands. If you want to enable exter-
nal command processing, you'll have to do the following...

® Enable external command checking with|the check external commands option
e Set the frequency of command checks with the command_check interval option

e Specify the location of the command file with fhe command_file option. Its best to put the exter-
nal command file in its own directory (i &isr/local/nagios/var/ny.

® Setup proper permissions on the directory containing the external command file. Details on how
to do this can be fourjd hre.

When Does Nagios Check FoeExternal Commands?

® At regular intervals specified by the command_check_interval option in the main configuration
file

e Immediately after event handlers are executed. This is in addtion to the regular cycle of external
command checks and is done to provide immediate action if an event handler submits commands
to Nagios.

Using External Commands

External commands can be used to accomplish a variety of things while Nagios is running. Example of
what can be done include temporarily disabling notifications for services and hosts, temporarily
disabling service checks, forcing immediate service checks, adding comments to hosts and services,
etc.

External Command Examples

Some example scripts that can be used to issue commands to Nagios can be founegm the
thandlers/subdirectory of the Nagios distribution. You may have to modify the scripts to accomodate
for differences in system command syntaxes, file and directory locations, etc.

Command Format

External commands that are written to[the command file have the following format...
[time] command_id;command_arguments

...wheretimeis the time (intime_tformat) that the external application or CGl committed the external
command to the command file. Some of the commands that are available are described in the table
below, along with theicommand_icand a description of theslommand_arguments

97

Implemented Commands

This is a description of the some of the external commands which have been implemented in Nagios.

Note that all time arguments should be specifietihie_tformat (seconds since the UNIX epoch).

Command ID

Command Arguments

Command Description

ADD_HOST_COMMENT

<host_name>;<persistent>;<author>;<comment>

This command is used to associate a comm
with the specified host. Theuthorargument
generally contains the name of the person
entered the comment. The actual comment
should not contain any semi-colons. The pe
tent flag determines whether or not the
comment will survive program restarts (1=sg
comment across program restarts, O=delete
comment on restart).

ent

ho

ISis-

e

ADD_SVC_COMMENT

<host_name>;<service_description>;<persistent>;<author>;<comr|

This command is used to associate a comm
with the specified host. Note that both the hg
name and service description are required. |
authorargument generally contains the nam:
the person who entered the comment. The
actual comment should not contain any
semi-colons. The persistent flag determines
whether or not the comment will survive
program restarts (1=save comment across
program restarts, O=delete comment on rest

ent
st

he
e of

art).

DEL_HOST_COMMENT

<comment_id>

This is used to delete a comment having a |
matchingcomment_idor the specified host.

DEL_ALL_HOST_COMMENTS

<host_name>

This is used to delete all comments associat}
with the specified host.

ed

DEL_SVC_COMMENT

<comment_id>

This is used to delete a comment having a |

matchingcomment_idor the specified servicg.

DEL_ALL_SVC_COMMENTS

<host_name>;<service_description>

This is used to delete all comments associat}
with the specified service. Note that both the]
host name and service description are requi

DELAY_HOST_NOTIFICATION

<host_name>;<next_noatification_time>

This will delay the next notification about thig
host until the time specified by timext_notifi-
cation_timeargument. This will have no effeg
if the host state changes before the next not
cation is scheduled to be sent out.

DELAY_SVC_NOTIFICATION

<host_name>;<service_description>;<next_notification_time>

This will delay the next notification about thig
service until the time specified by the
next_notification_timargument. Note that
both the host name and service description
required. This will have no effect if the servid
state changes before the next notification is
scheduled to be sent out. Thises notelay
notifications about the host.

SCHEDULE_SVC_CHECK

<host_name>;<service_description>;<next_check_time>

This will reschedule the next check of the sp)
ified service for the time specified by the

next_check_timargument. Note that both the
host name and service description are requi

SCHEDULE_HOST_SVC_CHECKS

<host_name><next_check_time>

This will reschedule the next check of all
services on the specified host for the time sp
ified by thenext_check_timargument.

ENABLE_SVC_CHECK

<host_name>;<service_description>

This will re-enable checks of the specified
service. Note that both the host name and
service description are required.

DISABLE_SVC_CHECK

<host_name>;<service_description>

This will temporarily disable checks of the

specified service. Service checks are autom
cally re-enabled when Nagios restarts. Issuil
this command will have the side effect of

temporarily preventing notifications from bei
sent out for the service.dbes noprevent noti
fications about the host from being sent out.

Ati-
'g

9

ENABLE_SVC_NOTIFICATIONS

<host_name>;<service_description>

This is used to re-enable notifications for the
specified service. Note that both the host nal
and service description are required.

DISABLE_SVC_NOTIFICATIONS

<host_name>;<service_description>

This is used to temporarily disable notificatig
from being sent out about the specified servi
Notifications are automatically re-enabled
when Nagios restarts. Note that both the ho.
name and service description are required. |
does notisable notifications for the host.

his

98

ENABLE_HOST_SVC_NOTIFICATIONS

<host_name>

This is used to re-enable notifications for all
services on the specified host. THiges not
enable notifications for the host.

DISABLE_HOST_SVC_NOTIFICATIONS

<host_name>

This is used to temporarily disable notificatiq
for all services on the specified host. Ttées
notdisable notifications for the host.

ENABLE_HOST_SVC_CHECKS

<host_name>

This will re-enable checks of all services on
specified host. If one or more services were
non-OK state when they were disabled,
contacts may receive notifications if the
service(s) recover after the checks are
re-enabled.

DISABLE_HOST_SVC_CHECKS

<host_name>

This will temporarily disable checks of all
services on the specified host. Service checl
are automatically re-enabled when Nagios
restarts. Issuing this command will have the
side effect of temporarily preventing notifica:
tions from being sent out for any of the affec
services. Idoes noprevent notifications abou
the host from being sent out.

it

ENABLE_HOST_NOTIFICATIONS

<host_name>

This will temporarily disable natifications for
this host. Note that thidoes noenable notifi-

cations for the services associated with this
host.

DISABLE_HOST_NOTIFICATIONS

<host_name>

This will temporarily disable notifications for
this host. Notifications are automatically
re-enabled when Nagios restarts. Note that
does notdisable notifications for the services
associated with this host.

=

S

ENABLE_ALL_NOTIFICATIONS_BEYOND_HOST

<host_name>

This will enable notifications for all hosts and
services "beyond" the host specified by the
host_namergument (from the view of
Nagios). This command is most often used i
conjunction witt redundant monitoring hosts|

h

DISABLE_ALL_NOTIFICATIONS_BEYOND_HOST|

<host_name>

This will temporarily disable notifications for
all hosts and services "beyond" the host spe]
fied by thehost_namergument (from the vie:
of Nagios). Notifications are automatically
re-enabled when Nagios restarts. This
command is most often used in conjunction

with[redundant monitorijg hosts.

ENABLE_NOTIFICATIONS

<execution_time>

This will enable host and service notification
on a program-wide basis at the time specifie]
by theexecution tim@rgument.

DISABLE_NOTIFICATIONS

<execution_time>

This will disable host and service notification
on a program-wide basis at the time specifie]
by theexecution timargument.

o7}

SHUTDOWN_PROGRAM

<execution_time>

This will cause Nagios to shutdown at the tin
specified by thexecution_timargument.
Note: Nagios cannot be restarted via the we|
interface once it has been shutdown.

ne

o

RESTART_PROGRAM

<execution_time>

This will cause Nagios to flush all configura-
tion state information, re-read all the config
files, and restart monitoring at the time speci
fied by theexecution_timeargument

PROCESS_SERVICE_CHECK_RESULT

<host_name>;<service_description>;<return_code>;<plugin_outpy

This command is used to submit check resu
for a particular service to Nagios. These

“passive" checks are acted upon in the sam
manner as normal "active" checks. More inf
mation on passive service checks can be fo

ts

PROCESS_HOST_CHECK_RESULT

<host_name>;<host_status>;<plugin_output>

This command is used to submit check resu
for a particular host to Nagios. These "passi\
checks are acted upon in a similiar manner
normal "active" checks. However, there are
some important limitations with passive host]
checks that you should be aware of. More
information on passive host checks can be

found[herk.

ye

SAVE_STATE_INFORMATION

<execution_time>

This will force Nagios to dump current state

information for all services and hosts to the fjle

specified by thg state retention [file variable
You must enable tHe retain_state informatiq
option for this to work.

99

READ_STATE_INFORMATION

<execution_time>

This will force Nagios to read previously sav
state information for all services and hosts fi

the file specified by thie state_retention] file

variable. You must enable the

retain_state _informatipn option for this to

work.

ed
pm

START_EXECUTING_SVC_CHECKS

This is used to resume the execution of ser
checks. The execution of service checks mal
have been stopped at an earlier time by eith
receiving aSSTOP_EXECUT-
ING_SVC_CHECK8ommand, or by setting

the[execute service chekks option in the mai

config file to 0. Most often used when imple-
menting redundant monitoring hdsts.

=
=1

STOP_EXECUTING_SVC_CHECKS

This is used to stop the execution of service
checks. When service checks are not being
executed, Nagios will keep requeuing checki
for a later time, but will not actually execute
any checks. This essentially puts Nagios int
“"sleep” mode, as far as monitoring is
concerned. Most often used when implemeny

ing[redundant monitoring hokts.

t

START_ACCEPTING_PASSIVE_SVC_CHECKS

This is used to resume the acceptance of
[passive service chedks for all services. The
acceptance of passive service checks may
been stopped at an earlier time by either reg
ing aSTOP_ACCEPT-
ING_PASSIVE_SVC_CHECK8mmand, or
by setting th¢ accept passive service chec
option in the main config file to 0. If passive
checks have been disabled for specific servi|
using theDISABLE_PASSIVE_SVC_CHECK]
command, passive checks wibht be accepted
for those services, but will for all others.

ave
eiv-

7]

ces
S

STOP_ACCEPTING_PASSIVE_SVC_CHECKS

This is used to disable the acceptance of
passive service chegks for all services.

ENABLE_PASSIVE_SVC_CHECKS

<host_name>;<service_description>

This is used to resume the acceptance of
[passive service chedks for a specific service
The acceptance of passive checks may have
been disabled for a service at an earlier timg
receiving a
DISABLE_PASSIVE_SVC_CHECKS
command. If passive checks have been disg
for all services either by using the
STOP_ACCEPTING_PASSIVE_SVC_CHE
command or by setting the

laccept passive_service _chgcks option in th
main config file to 0, passive checks wilht be
accepted for this service.

by

bled

KS

DISABLE_PASSIVE_SVC_CHECKS

<host_name>;<service_description>

This is used to disable the acceptance of
[passive service chedks for a specific service]

100

Indirect Host and Service Checks

Intro duction

Chances are, many of the services that you're going to be monitoring on your network can be checked
directly by using a plugin on the host that runs Nagios. Examples of services that can be checked
directly include availability of web, email, and FTP servers. These services can be checked directly by
a plugin from the Nagios host because they are publicly accessible resources. However, there are a
number of things you may be interested in monitoring that are not as publicly accessible as other
services. These "private" resources/services include things like disk usage, processor load, etc. on
remote machines. Private resources like these cannot be checked without the use of an intermediary
agent. Service checks which require an intermediary agent of some kind to actually perform the check
are calledndirect checks.

Indirect checks are useful for:

® Monitoring "local" resources (such as disk usage, processer load, etc.) on remote hosts

® Monitoring services and hosts behind firewalls

e Obtaining more realistic results from checks of time-sensitive services between remote hosts (i.e.
ping response times between two remote hosts)

There are several methods for performing indirect active checks (passive checks are not discussed
here), but | will only talk about how they can be done by using thé nrpe addon.

Indirect ServiceChecks

The diagram below shows how indirect service checks work. Click the image for a larger version...

101

Indirect Service Checks

Last Updated: 07-12-2001

Central Monitoring Host
{Outside Of Firewall}

check_nrpe
plugin

Fivewail aliows nepe traffic to
pass thrangh iF ariginating frow

central manitoring sener
Firewall {] / Firewall

\J

Remote Host #1
{Running NRPE)

Remote Host #2 Remote Host #3 Remote Host #4

Multi ple Indi rected ServiceChecks

If you are monitoring servers that lie behind a firewall (and the host running Nagios is outside that
firewall), checking services on those machines can prove to be a bit of a pain. Chances are that you are
blocking most incoming traffic that would normally be required to perform the monitoring. One solu-

tion for performing active checKs (passive chicks could also be used) on the hosts behind the firewall
would be to poke a tiny hold in the firewall filters that allow the Nagios host to make callsntpéhe
daemon on one host inside the firewall. The host inside the firewall could then be used as an interme-

diary in performing checks on the other servers inside the firewall.

102

http://nagios.sourceforge.net/docs/2_0/images/indirectsvccheck.png

The diagram below show how multiple indirect service checks work. Notice hawpgbdaemon is
running on hosts #1 and #2. The copy that runs on host #2 is used to aliopethgent on host #1 to
perform a check of a "private” service on host #2. "Private" services are things like process load, disk

usage, etc. that are not directly exposed like SMTP, FTP, and web services. Click on the diagram for a
larger image...

103

Multiple Indirected Service Checks

Last Updated: 07-21-2001

Central Monitoring Host
{Outside Of Firewall)

check_nrpe
plugin

! Firewall aifows negpe traffic to
pass throngh if ariginating from

central manitoring setver
Firewall /] / Firewall

Remote Host #1
{Running NRPE)

check_nrpe
plugin

Remote Host #2
{(Running NRPE)

Indirect Host Checks

Indirect host checks work on the same principle as indirect service checks. Basically, the plugin used
in the host check command asks an intermediary agent (i.e. a daemon running on a remote host) to
perform the host check for it. Indirect host checks are useful when the remote hosts being monitored

104

http://nagios.sourceforge.net/docs/2_0/images/indirectsvccheck2.png

are located behind a firewall and you want to restrict inbound monitoring traffic to a particular
machine. That machine (remote host #1 in the diagram below) performs will perform the host check
and return the results back to the top leredck_nrpeplugin (on the central server). It should be noted
that with this setup comes potential problems. If remote host #1 goes dowhedthke nrpelugin will

not be able to contact timepe daemon and Nagios will believe that remote hosts #2, #3, and #4 are
down, even though this may not be the case. If host #1 is your firewall machine, then the problem isn'’t
really an issue because Nagios will detect that it is down and mark hosts #2, #3, and #4 as being
unreachable.

The diagram below shows how an indirect host check can be performed by ufimugtti@emon and
check_nrpeplugin. Click the image for a larger version.

105

Indirect Host Checks

Last Updated: 07-12-2001

Central Monitoring Host
{Outside Of Firewall}

check_nrpe
plugin

Firewrall [\ Firewall
4 3
\J

\ Fivewsail aliows nepe traffic to

pass throngh iF ariginating frokn
central manitoring sener

Remote Host #1
{Running NRPE)

Remote Host #2 Remote Host #4

Remote Host #3

106

http://nagios.sourceforge.net/docs/2_0/images/indirecthostcheck.png

Passive Host and Service Checks

Intro duction

On of the features of Nagios is that is can process host and service check results that are submitted by
external applications. Host and service checks which are performed and submitted to Nagios by exter-
nal apps are callgobssivechecks. Passive checks can be contrastedasfibe checks, which are host

or service checks that have been initiated by Nagios.

Why The Need For Passiv€hecks?

Passive checks are useful for monitoring services that are:

® |ocated behind a firewall, and can therefore not be checked actively from the host running Nagios
® asynchronous in nature and can therefore not be actively checked in a reliable manner (e.g.
SNMP traps, security alerts, etc.)

Passive host and service checks are also useful when configured a distributed monitofing setup.

Passive Service Checks vs. Passive HG$tecks

Passive host and service checks function in a similiar manner, but there are some important limitations
in regards to passive host checks. Read Helow for more information about the limitations with passive
host checks.

How Do Passive Service Check&/ork?

The only real difference between active and passive checks is that active checks are initiated by
Nagios, while passive checks are performed by external applications. Once an external application has
performed a service check (either actively or by having received an synchronous event like an SNMP
trap or security alert), it submits the results of the service "check" to Nagios thro{igh the]external
command file.

The next time Nagios processes the contents of the external command file, it will place the results of
all passive service checks into a queue for later processing. The same queue that is used for storing
results from active checks is also used to store the results from passive checks.

Nagios will periodically execute|a service reaper gvent and scan the service check result queue. Each
service check result, regardless of whether the check was active or passive, is processed in the same
manner. The service check logic is exactly the same for both types of checks. This provides a seamless
method for handling both active and passive service check results.

How Do External Apps Submit Service CheclkResults?

External applications can submit service check results to Nagios by writing a
PROCESS_ SERVICE_CHECK_RESULT external command tp the external command file.

The format of the command is as follows:

107

[<timestamp>] PROCESS SERVICE_CHECK RESULT;<host _name>;<descrip-
tion>;<return_code>;<plugin_output>

where...

e timestamgs the time in time_t format (seconds since the UNIX epoch) that the service check was
perfomed (or submitted). Please note the single space after the right bracket.

® host_namas the short name of the host associated with the service in the service definition

® descriptionis the description of the service as specified in the service definition

® return_codeis the return code of the check (0=0K, 1=WARNING, 2=CRITICAL,
3=UNKNOWN)

® plugin_outputs the text output of the service check (i.e. the plugin output)

Note that in order to submit service checks to Nagios, a service must have already been defined in the
[object configuration file! Nagios will ignore all check results for services that had not been configured
before it was last (re)started.

If you only want passive results to be provided for a specific service (i.e. active checks should not be
performed), simply set thective_checks_enabledember of the service definition to 0. This will

prevent Nagios from ever actively performing a check of the service. Make sure that the
passive_checks_enabletember of the service definition is set to 1. If it isn’t, Nagios won'’t process
passive checks for the service!

An example shell script of how to submit passive service check results to Nagios can be found in the
documentation ojn volatile serviges.

Submitting Passive Service Check Results From Remdt®sts

If an application that resides on the same host as Nagios is sending passive service check results, it can
simply write the results directly to the external command file as outlined above. However, applications
on remote hosts can’t do this so easily. In order to allow remote hosts to send passive service check
results to the host that runs Nagios, I've developef th¢ nsca addon. The addon consists of a daemon
that runs on the Nagios hosts and a client that is executed from remote hosts. The daemon will listen

for connections from remote clients, perform some basic validation on the results being submitted, and
then write the check results directly into the external command file (as described above). More infor-
mation on the nsca addon can be fdund|here...

Using Both Active And Passive ServicEhecks

Unless you're implementing| a distributed monitofing environment with the central server accepting
only passive service checks (and not performing any active checks), you'll probably be using both
types of checks in your setup. As mentioned before, active checks are more suited for services that
lend themselves to periodic checks (availability of an FTP or web server, etc), whereas passive checks
are better off at handling asynchronous events that occur at variable intervals (security alerts, etc.).

The image below gives a visual representation of how active and passive service checks can both be
used to monitor network resources (click on the image for a larger version).

The orange bubbles on the right side of the image are third-party applications that submit passive
check results to Nagios’ external command file. One of the applications resides on the same host as
Nagios, so it can write directly to the command file. The other application resides on a remote host and
makes used of the nsca client program and daemon to transfer the passive check results to Nagios.

108

The items on the left side of the image represent active service checks that Nagios is performing. I've
shown how the checks can be made for local resources (disk usage, etc.), "exposed" resources on
remote hosts (web server, FTP server, etc.), and "private" resources on remote hosts (remote host disk
usage, processor load, etc.). In this example, the private resources on the remote hosts are actually
checked by making use of the frpe addon, which facilitates the execution of plugins on remote hosts.

109

Using Active And Passive Checks Together

Last Updatec: 07-21-2001

Monitoring Host

Resource!
Service

Remote Host #1 Remote Host #2

~

Active Service Chechs Passive Service Checks

How Do Passive Host Checkg/ork?

Passive host checks work in a similiar manner to passive service checks. Once an external application
has performed a host check, it submits the results of that host "check” to Nagios thrpugh thg external

command filg. The next time Nagios processes the contents of the external command file, it will
process the host check result that was submitted.

110

http://nagios.sourceforge.net/docs/2_0/images/activepassive.png

WARNING! Passive host checks have some limitations. Unlike active host checks, Nagios does not
attempt to determine whether or host is DOWN or UNREACHABLE with passive checks. Rather,
Nagios takes the passive check result to be the actual state the host is in and doesn'’t try to determine
the actual state. In contrast, Nagios attempts to determine the proper status (DOWN or UNREACH-
ABLE) for hosts that are not UP when the host check is active (initiated by Nagios). This can cause
problems if you are submitting passive checks from a remote host or you|[have a distributed mpnitoring
where the parent/child host relationships are different. See the documenfation on host]reachabil-
[ity]for more information on how DOWN and UNREACHABLE states are determined for active host
checks.

How Do External Apps Submit Host CheckResults?

External applications can submit host check results to Nagios by writing a
PROCESS HOST _CHECK_ RESULT external comnpand tp the external command file.

The format of the command is as follows:

[<times-
tamp>] PROCESS HOST CHECK_RESULT;<host_name>;<host_status>;<plugin_output>

where...

® timestamgs the time in time_t format (seconds since the UNIX epoch) that the host check was
perfomed (or submitted). Please note the single space after the right bracket.

® host_namaés the short name of the host (as defined in the host definition)

® host_statuss the status of the host (0=UP, 1=DOWN, 2=UNREACHABLE)

e plugin_outputs the text output of the host check

Note that in order to submit host checks to Nagios, a host must have already been defifjed in fhe object
[configuration fil¢! Nagios will ignore all check results for hosts that had not been configured before it
was last (re)started.

Submitting Passive Host Check Results From Remotdosts

If an application that resides on the same host as Nagios is sending passive service check results, it can
simply write the results directly to the external command file as outlined above. However, applications
on remote hosts can’t do this so easily. In order to allow remote hosts to send passive host check
results to the host that runs Nagios, you can ude the nsca addon. The addon consists of a daemon that
runs on the Nagios hosts and a client that is executed from remote hosts. The daemon will listen for
connections from remote clients, perform some basic validation on the results being submitted, and

then write the check results directly into the external command file (as described above). More infor-
mation on the nsca addon can be fdund|here.

111

Volatile Services

Intro duction

Nagios has the ability to distinguish between "normal" services and "volatile" serviceas. tiatile

option in each service definition allows you to specify whether a specific service is volatile or not. For
most people, the majority of all monitored services will be non-volatile (i.e. "normal"). However,
volatile services can be very useful when used properly...

What Are They Useful For?

Volatile services are useful for monitoring...

® things that automatically reset themselves to an "OK" state each time they are checked
® events such as security alerts which require attention every time there is a problem (and not just
the first time)

What's So Special About VolatileServices?

Volatile services differ from "normal" services in three important wagsh timethey are checked
when they are in[a hgrd non-OK state, and the check returns a non-OK state (i.e. no state change has
occurred)...

® the non-OK service state is logged
® contacts are notified about the problem (if that’'s what should bg done)
e the|event handler for the service is run (if one has been defined)

These events normally only occur for services when they are in a non-OK state and a hard state change
has just occurred. In other words, they only happen the first time that a service goes into a non-OK
state. If future checks of the service result in the same non-OK state, no hard state change occurs and
none of the events mentioned take place again.

The Power OfTwo

If you combine the features of volatile services|and passive service|checks, you can do some very
useful things. Examples of this include handling SNMP traps, security alerts, etc.

How about an example... Let’s say you're runiing Psionic Softyare’s PoriSentry product (which is
free, by the way) to detect port scans on your machine and automatically firewall potential intruders. If
you want to let Nagios know about port scans, you could do the following..

In Nagios:

® Configure a service calld@ort Scansand associate it with the host that PortSentry is running on.

® Set themax_check_attemptgption in the service definition to 1. This will tell Nagios to immedi-
ate force the service intd a hard dtate when a non-OK state is reported.

e Either set thective_checks_enablaxbtion to 0 or set theheck_timeoption in the service defi-
nition to g timeperidd that contains valid time ranges. Doing either of these will prevent
Nagios from ever actively checking the service. Even though the service check will get sched-
uled, it will never actually be checked.

112

http://www.psionic.com/
http://www.psionic.com/abacus/portsentry

In PortSentry:

e Edit your PortSentry configuration file (portsentry.conf), define a command for the
KILL_RUN_CMD directive as follows:
KILL_RUN_CMD="/usr/local/Nagios/libexec/eventhandlers/submit_check_ resst name>
'Port Scans’ 2 'Port scan from host $TARGET$ on port $PORT$. Host has been firewalled.™
Make sure to replacehost_name>with the short name of the host that the service is associated
with.

Create a shell script in thesr/local/nagios/libexec/eventhandlatsectory named
submit_check_resulThe contents of the shell script should be something similiar to the following...

#1/bin/sh

Write a command to the Nagios command file to cause
it to process a service check result

echocmd="/bin/echo"
CommandFile="/usr/local/nagios/var/rw/nagios.cmd"

get the current date/time in seconds since UNIX epoch
datetime="date +%s'

create the command line to add to the command file
cmdline="[$datetime] PROCESS_SERVICE_CHECK_RESULT;$1;$2;$3;$4"

append the command to the end of the command file
‘$echocmd $cmdline >> $CommandFile*

Note that if you are running PortSentry as root, you will have to make additions to the script to reset
file ownership and permissions so that Nagios and the CGlIs can read/modify the command file.
Details on permissions/ownership of the command file can be fourld here.

So what happens when PortSentry detects a port scan on the machine?

It blocks the host (this is a function of the PortSentry software)
It executes theubmit_check resudthell script to send the security alert info to Nagios
Nagios reads the command file, recognized the port scan entry as a passive service check

to contacts (if configured to do so), and executes the event handler Rortlfgcanservice (if
one is defined)

113

Nagios processes the results of the service by logging the CRITICAL state, sending notifications

Service and Host Result Freshness Checks

Intro duction

Nagios supports a feature that does "freshness" checking on the results of host and service checks.
This feature is useful when you want to ensure{that passive thecks are being received as frequently as
you want. Although freshness checking can be used in a number of situations, it is primarily useful
when attempting to configurg a distributed monitoring environment.

The purpose of "freshness" checking is to ensure that host and service checks are being provided
passively by external applications on a regular basis. If the results of a particular host or service check
(for which freshness checking has been enabled) is determined to be "stale", Nagios will force an
active check of that host or service.

Host vs. Servicd-reshnessChecking

The documentation below discusses service freshness checking. Host freshness checking (which is not
documented seperately) works in a similiar way to service freshness checking - except, of course, that
its for hosts instead of services. If you need to configure host freshness checking, adjust the directions
given below appropriately.

Configuring ServiceFreshnessChecking

Before you configure per-service freshness threshold, you must enable freshness checking using the
[check service freshngss and service freshness check |nterval directives in the main config file. If
you were configuring host freshness checking, you would uge the check host freshness and

lhost freshness check intefval directives.

So how do you go about enabling freshness checking for a particular service? You need to configure
[service definitions as follows.

e Thecheck_ freshnes®ption in the service definition should be set to 1. This enables "freshness"
checking for the service.

e Thefreshness_thresholdption in the service definition should be set to a value (in seconds)
which reflects how "fresh" the results for the service should be.

e Thecheck _commandoption in the service definition should reflect valid command that should
be used to actively check the service when it is detected as being "stale".

How The FreshnessThreshold Works

Nagios periodically checks the "freshness" of the results for all services that have freshness checking
enabled. Théreshness_thresholabtion in each service definition is used to determine how "fresh"

the results for each service should be. For example, if you seeshe@ess_thresholaption to 60 for

one of your services, Nagios will consider that service to be "stale" if its results are older than 60
seconds (1 minute). If you do not specify a value foffrdghness_thresholajption (or you set it to

zero), Nagios will automatically calculate a "freshness" threshold to use by looking at either the
normal_check_intervadr retry_check_intervabptions (depending on wHat type of state the service is
currently in).

114

What Happens When A Service Check Result BecomE&Stale"

If the check results of a service are found to be "stale" (as described above), Nagios will force an
active check of the service by executing the command specified bizgehle_commandption in the

service definition. It is important to note that an active service check which is being forced because the
service was detected as being "stale" gets exeewtmdif active service checks are disabled on a
program-wide or service-specific basis

Working With Passive-Only Checks

As | mentioned earlier, freshness checking is of most use when you are dealing with services that get
their results fromh passive chefks. More often than not (as in the cage with distributed mdnitoring
[setupk), these services may not be gettlhgf their results from passive checks - no results are
obtained from active checks.

An example of a passive-only service might be one that reports the status of your nightly backup jobs.
Perhaps you have a external script that submit the results of the backup job to Nagios once the backup
is completed. In this case, all of the checks/results for the service are provided by an external applica-
tion using passive checks. In order to ensure that the status of the backup job gets reported every day,
you may want to enable freshness checking for the service. If the external script doesn’t submit the
results of the backup job, you can have Nagios fake a critical result by doing something like this...

Here’s what the definition for the service might look like (some required options are omitted)...

define service{
host_name backup-server
service_description ArcServe Backup Job
active_checks_enabled 0 ; active checks are NOT enabled
passive_checks_enabled 1 ; passive checks are enabled (this is how results are reported)
check_freshness 1
freshness_threshold 93600 ; 26 hour threshold, since backups may not always finish at the same time
check_command no-backup-report ; this command is run only if the service results are "stale"
...other options...

}

Notice that active checks are disabled for the service. This is because the results for the service are
only made by an external application using passive checks. Freshness checking is enabled and the
freshness threshold has been set to 26 hours. This is a bit longer than 24 hours because backup jobs
sometimes run late from day to day (depending on how much data there is to backup, how much
network traffic is present, etc.). The-backup-reportommand is executed only if the results of the
service are determined to be "stale". The definition ohthackup-reporcommand might look like

this...

define command{
command_name no-backup-report
command_line /usr/local/nagios/libexec/nobackupreport.sh

}

Thenobackupreport.sh script in your/usr/local/nagios/libexedirectory might look something like
this:

#l/bin/sh
/bin/fecho "CRITICAL: Results of backup job were not reported!"

exit 2

115

If Nagios detects that the service results are stale, it will rundHmckup-report command as an

active service check (even though active checks are disabled for this specific service - remember that
this is a special case). This causedtise/local/nagios/libexec/nobackupreportstript to be

executed, which returns a critical state. The service go into to a critical state (if it isn’t already there)
and someone will probably get notified of the problem.

116

Distributed Monitoring

Intro duction

Nagios can be configured to support distributed monitoring of network services and resources. I'll try
to briefly explan how this can be accomplished...

Goals

The goal in the distributed monitoring environment that | will describe is to offload the overhead
(CPU usage, etc.) of performing service checks from a "central" server onto one or more "distributed"
servers. Most small to medium sized shops will not have a real need for setting up such an environ-
ment. However, when you want to start monitoring hundreds or even thousédudssénd several

times that many services) using Nagios, this becomes quite important.

ReferenceDiagram

The diagram below should help give you a general idea of how distributed monitoring works with
Nagios. I'll be referring to the items shown in the diagram as | explain things...

117

Central Monitoring Server

Distributed
Monitoring

Lazt Updlated: 07-13-2001

External
Command File

Distributed Monitoring Server #1 Distributed Monitoring Server #2

©

1S

e

I oocsp 4 @ -
\ = Command :

0CsP _ @
Command

P

.

.
" .
. .
.
.

.
.
.

Hosts'senhvices monitored directly by
distributed server #2, and Indirectly by
central setver
Hosts'sepvices monitared directly by
distributed server #1, and indirectiy by
central sener

Central Server vs. Distributed Servers

When setting up a distributed monitoring environment with Nagios, there are differences in the way
the central and distributed servers are configured. I'll show you how to configure both types of servers

and explain what effects the changes being made have on the overall monitoring. For starters, lets
describe the purpose of the different types of servers...

118

http://nagios.sourceforge.net/docs/2_0/images/distributed.png

The function of aistributed servers to actively perform checks all the services you define for a

"cluster" of hosts. | use the term "cluster” loosely - it basically just mean an arbitrary group of hosts on
your network. Depending on your network layout, you may have several cluters at one physical loca-
tion, or each cluster may be separated by a WAN, its own firewall, etc. The important thing to remem-
ber to that for each cluster of hosts (however you define that), there is one distributed server that runs
Nagios and monitors the services on the hosts in the cluster. A distributed server is usually a
bare-bones installation of Nagios. It doesn’'t have to have the web interface installed, send out notifica-
tions, run event handler scripts, or do anything other than execute service checks if you don’t want it
to. More detailed information on configuring a distributed server comes later...

The purpose of theentral serveiis to simply listen for service check results from one or more

distributed servers. Even though services are occassionally actively checked from the central server,
the active checks are only performed in dire circumstances, so lets just say that the central server only
accepts passive check for now. Since the central server is obfaining passive servjce check results from
one or more distributed servers, it serves as the focal point for all monitoring logic (i.e. it sends out
notifications, runs event handler scripts, determines host states, has the web interface installed, etc).

Obtaining Service Checknfor mation From Distributed Monitors

Okay, before we go jumping into configuration detail we need to know how to send the service check
results from the distributed servers to the central server. I've already discussed how to submit passive
check results to Nagios from same host that Nagios is running on (as described in the documentation
on[passive checks), but | haven't given any info on how to submit passive check results from other
hosts.

In order to facilitate the submission of passive check results to a remote host, I've written the nsca
[addoh. The addon consists of two pieces. The first is a client program (send_nsca) which is run from a
remote host and is used to send the service check results to another server. The second piece is the
nsca daemon (nsca) which either runs as a standalone daemon or under inetd and listens for connec-
tions from client programs. Upon receiving service check information from a client, the daemon will
sumbit the check information to Nagios (on the central server) by inserting a
PROCESS_SVC_CHECK_RESUWommand into the external command|file, along with the check
results. The next time Nagios checkd[for external comrands, it will find the passive service check
information that was sent from the distributed server and process it. Easy, huh?

Distributed Server Configuration

So how exactly is Nagios configured on a distributed server? Basically, its just a bare-bones installa-
tion. You don’t need to install the web interface or have notifications sent out from the server, as this
will all be handled by the central server.

Key configuration changes:

® Only those services and hosts which are being monitored directly by the distributed server are
defined in thg object configuration file.

® The distributed server has|its enable notifications directive set to 0. This will prevent any notifi-
cations from being sent out by the server.

® The distributed server is configured to obsess over services.

e The distributed server has[an ocsp comrhand defined (as described below).

119

In order to make everything come together and work properly, we want the distributed server to report
the results o#ll service checks to Nagios. We could use event hahdlers to cepagesn the state

of a service, but that just doesn't cut it. In order to force the distributed server to report all service
check results, you must enabled|the obsess _over _sgrvices option in the main configuration file and
provide § ocsp_command to be run after every service check. We will use the ocsp command to send
the results of all service checks to the central server, making use of the send_nsca client and nsca
daemon (as described above) to handle the tranmission.

In order to accomplish this, you'll need to define an ocsp command like this:
ocsp_command=submit_check_result

The command definition for theubmit_check_resuttommand looks something like this:

define command{
command_name submit_check_result
command_line /usr/local/nagios/libexec/eventhandlers/submit_check_result SHOSTNAMES '$SERVICEDESC$' $SERVICESTATES '$SOUTPUTS$
}

Thesubmit_check_resusthell scripts looks something like this (replaeatral_servemwith the IP
address of the central server):

#l/bin/sh

Arguments:

$1 = host_name (Short name of host that the service is
associated with)

$2 = svc_description (Description of the service)

$3 = state_string (A string representing the status of
the given service - "OK", "WARNING", "CRITICAL"
or "UNKNOWN")

$4 = plugin_output (A text string that should be used
as the plugin output for the service checks)

#

Convert the state string to the corresponding return code
return_code=-1

case "$3"in
OK)
return_code=0

WARNING)
return_code=1

CRITICAL)
return_code=2

UNKNOWN)
return_code=-1

esac

pipe the service check info into the send_nsca program, which
#in turn transmits the data to the nsca daemon on the central
monitoring server

Ioin/printf "%s\t%s\t%s\t%s\n" "$1" "$2" "$return_code" "$4" | /usr/local/nagios/bin/send_nsca central_server - /usr/local/nagios/etc/send_nsca.cfg

The script above assumes that you have the send_nsca program and it configuration file
(send_nsca.cfg) located in thesr/local/nagios/binand/usr/local/nagios/etcdirectories, respec-
tively.

That's it! We’ve sucessfully configured a remote host running Nagios to act as a distributed monitor-
ing server. Let's go over exactly what happens with the distributed server and how it sends service
check results to Nagios (the steps outlined below correspond to the numbers in the reference diagram
above):

1. After the distributed server finishes executing a service check, it executes the command you
defined by th¢ ocsp_command variable. In our example, this leghocal/nagios/libexec/even-
thandlers/submit_check_ressitript. Note that the definition for tiseibmit_check_result
command passed four pieces of information to the script: the name of the host the service is asso-
ciated with, the service description, the return code from the service check, and the plugin output
from the service check.

120

2. Thesubmit_check_resudicript pipes the service check information (host name, description,
return code, and output) to teend_nscalient program.

3. Thesend_nsc@rogram transmits the service check information tond@adaemon on the
central monitoring server.

4. Thenscadaemon on the central server takes the service check information and writes it to the
external command file for later pickup by Nagios.

5. The Nagios process on the central server reads the external command file and processes the
passive service check information that originated from the distributed monitoring server.

Central Server Configuration

We've looked at hot distributed monitoring servers should be configured, so let’s turn to the central
server. For all intensive purposes, the central is configured as you would normally configure a stan-
dalone server. It is setup as follows:

® The central server has the web interface installed (optional, but recommended)

® The central server has|its enable notificajions directive set to 1. This will enable notifications.
(optional, but recommended)

® The central server hfas active service checks disabled (optional, but recommended - see notes
below)

® The central server has external command checks enabled (required)

® The central server hfs passive service clecks enabled (required)

There are three other very important things that you need to keep in mind when configuring the central
server:

® The central server must have service definitionaflaserviceshat are being monitored by all
the distributed servers. Nagios will ignore passive check results if they do not correspond to a
service that has been defined.

e |[f you're only using the central server to process services whose results are going to be provided
by distributed hosts, you can simply disable all active service checks on a program-wide basis by
setting thg¢ execute service checks directive to 0. If you're using the central server to actively
monitor a few services on its own (without the aid of distributed servers), the
enable_active_checksption of the defintions for service being monitored by distributed servers
should be set to 0. This will prevent Nagios from actively checking those services.

It is important that you either disable all service checks on a program-wide basis or disable the
enable_active_checksption in the definitions for each service that is monitored by a distributed

server. This will ensure that active service checks are never executed under normal circumstances. The
services will keep getting rescheduled at their normal check intervals (3 minutes, 5 minutes, etc...), but
the won't actually be executed. This rescheduling loop will just continue all the while Nagios is

running. I'll explain why this is done in a bit...

That's it! Easy, huh?

Problems With PassiveChecks

For all intensive purposes we can say that the central server is relying solely on passive checks for
monitoring. The main problem with relying completely on passive checks for monitoring is the fact

that Nagios must rely on something else to provide the monitoring data. What if the remote host that is
sending in passive check results goes down or becomes unreachable? If Nagios isn’t actively checking

121

the services on the host, how will it know that there is a problem?
Fortunately, there is a way we can handle these types of problems...

FreshnessChecking

Nagios supports a feature that does "freshness" checking on the results of service checks. More infor-
mation freshness checking can be found]here. This features gives some protection against situations
where remote hosts may stop sending passive service checks into the central monitoring server. The
purpose of "freshness" checking is to ensure that service checks are either being provided passively by
distributed servers on a regular basis or performed actively by the central server if the need arises. If
the service check results provided by the distributed servers get "stale", Nagios can be configured to
force active checks of the service from the central monitoring host.

So how do you do this? On the central monitoring server you need to configure services that are being
monitoring by distributed servers as follows...

® Thecheck_freshnessption in the service definitions should be set to 1. This enables "freshness”
checking for the services.

e Thefreshness_thresholaption in the service definitions should be set to a value (in seconds)
which reflects how "fresh" the results for the services (provided by the distributed servers) should
be.

e Thecheck_commandption in the service definitions should reflect valid commands that can be
used to actively check the service from the central monitoring server.

Nagios periodically checks the "freshness" of the results for all services that have freshness checking
enabled. Théreshness_thresholabtion in each service definition is used to determine how "fresh"

the results for each service should be. For example, if you set this value to 300 for one of your
services, Nagios will consider the service results to be "stale" if they're older than 5 minutes (300
seconds). If you do not specify a value for fiteshness_thresholaption, Nagios will automatically
calculate a "freshness" threshold by looking at eithentinmal _check_intervadr retry _check_inter-

val options (depending on wHat type of dtate the service is in). If the service results are found to be
"stale", Nagios will run the service check command specified bghttbek _commandption in the

service definition, thereby actively checking the service.

Remember that you have to specifyheeck_commandption in the service definitions that can be

used to actively check the status of the service from the central monitoring server. Under normal
circumstances, this check command is never executed (because active checks were disabled on a
program-wide basis or for the specific services). When freshness checking is enabled, Nagios will run
this command to actively check the status of the seewiea if active checks are disabled on a
program-wide or service-specific basis

If you are unable to define commands to actively check a service from the central monitoring host (or
if turns out to be a major pain), you could simply define all your services witthdwk _command

option set to run a dummy script that returns a critical status. Here’s an example... Let’'s assume you
define a command called 'service-is-stale’ and use that command nameletke commandption

of your services. Here’s what the definition would look like...

define command{
command_name service-is-stale
command_line /usr/local/nagios/libexec/staleservice.sh

}

122

Thestaleservice.slscript in your/usr/local/nagios/libexedirectory might look something like this:

#!/bin/sh

/bin/echo "CRITICAL: Service results are stale!"

exit 2

When Nagios detects that the service results are stale and rges\ice-is-stalecommand, the
{/usr/local/nagios/libexec/staleservice stript is executed and the service will go into a critical state.
This would likely cause notifications to be sent out, so you'll know that there’s a problem.

Performing Host Checks

At this point you know how to obtain service check results passivly from distributed servers. This
means that the central server is not actively checking services on its own. But what about host checks?
You still need to do them, so how?

Since host checks usually compromise a small part of monitoring activity (they aren’t done unless
absolutely necessary), I'd recommend that you perform host checks actively from the central server.
That means that you define host checks on the central server the same way that you do on the
distributed servers (and the same way you would in a normal, non-distributed setup).

Passive host checks are available (fead here), so you could use them in your distributed monitoring
setup, but they suffer from a few problems. The biggest problem is that Nagios does not translate
passive host check problem states (DOWN and UNREACHABLE) when they are processed. This
means that if your monitoring servers have a different parent/child host structure (and they will, if you
monitoring servers are in different locations), the central monitoring server will have an inaccurate
view of host states.

If you do want to send passive host checks to a central server in your distributed monitoring setup,
make sure:

® The central server hpas passive host checks enabled (required)
® The distributed server is configured to obsess over|hosts.
e The distributed server has[an ochp comrhand defined.

The ochp command, which is used for processing host check results, works in a similiar manner to the
ocsp command, which is used for processing service check results (see documentation above). In order
to make sure passive host check results are up to date, you'll want tof enable freshnes$ checking for
hosts (similiar to what is described above for services).

123

Redundant and Failover Network Monitoring

Intro duction

This section describes a few scenarios for implementing redundant monitoring hosts an various types
of network layouts. With redundant hosts, you can maintain the ability to monitor your network when
the primary host that runs Nagios fails or when portions of your network become unreachable.

Note: If you are just learning how to use Nagios, | would suggest not trying to implement redudancy
until you have becoming familiar with the prerequigites I've laid out. Redundancy is a relatively
complicated issue to understand, and even more difficult to implement properly.

Index

Prerequisite

S

[Scenario 1 - Redundant monitorjing
[Scenario 2 - Failover monitoring

Prerequisites

Before you can even think about implementing redundancy with Nagios, you need to be familiar with
the following...

Implementing event handl¢rs for hosts and services

Issuing external commar)ds to Nagios via shell scripts

Executing plugins op remote hdsts using eithef the nrpe hddon or some other method
Checking the status of the Nagios process with the check hagios plugin

Sample Scripts

All of the sample scripts that | use in this documentation can be foundeénehthandlerssubdirec-
tory of the Nagios distribution. You'll probably need to modify them to work on your system...

Scenario 1 - Redundant Monitoring

Intro duction

This is an easy (and naive) method of implementing redundant monitoring hosts on your network and
it will only protect against a limited number of failures. More complex setups are necessary in order to
provide smarter redundancy, better redundancy across different network segments, etc.

Goals

The goal of this type of redundancy implementation is simple. Both the "master" and "slave" hosts
monitor the same hosts and service on the network. Under normal circumstances only the "master”
host will be sending out notifications to contacts about problems. We want the "slave" host running
Nagios to take over the job of notifying contacts about problems if:

124

1. The "master" host that runs Nagios is down or..
2. The Nagios process on the "master" host stops running for some reason

Network Layout Diagram

The diagram below shows a very simple network setup. For this scenario | will be assuming that hosts
A and E are both running Nagios and are monitoring all the hosts shown. Host A will be considered
the "master" host and host E will be considered the "slave" host.

Haost A

Haost D Haost E Host F

Initial Program_Settings

The slave host (host E) has its inifial enable notifications directive disabled, thereby preventing it
from sending out any host or service notifications. You also want to make sure that the slave host has
its|check _external _commands directive enabled. That was easy enough...

Initial Configuration

Next we need to consider the differences between the object configuratioh file(s) on the master and
slave hosts...

| will assume that you have the master host (host A) setup to monitor services on all hosts shown in
the diagram above. The slave host (host E) should be setup to monitor the same services and hosts,
with the following additions in the configuration file...

e The host definition for host A (in the host E configuration file) should have & host eventhandler
defined. Lets say the name of the host event handbemidle-master-host-event

® The configuration file on host E should have a service defined to check the status of the Nagios
process on host A. Lets assume that you define this service check to chedkenagioplugin
on host A. This can be done by using one of the methods descrjbed in this FAQ.

e The service definition for the Nagios process check on host A should handler
defined. Lets say the name of the service event handlanfle-master-proc-event

It is important to note that host A (the master host) has no knowledge of host E (the slave host). In this
scenario it simply doesn't need to. Of course you may be monitoring services on host E from host A,
but that has nothing to do with the implementation of redundancy...

125

Event Handler Command Definitions

We need to stop for a minute and describe what the command definitions for the event handlers on the
slave host look like. Here is an example...
define command{

command_name handle-master-host-event

command_line /usr/local/nagios/libexec/eventhandlers/handle-master-host-event $SHOSTSTATES $HOSTSTATETYPES$
}

define command{
command_name handle-master-proc-event
command_line /usr/local/nagios/libexec/eventhandlers/handle-master-proc-event $SERVICESTATES$ $SERVICESTATETYPE$
}

This assumes that you have placed the event handler scriptdusrtacal/nagios/libexec/even-
thandlersdirectory. You may place them anywhere you wish, but you’ll need to modify the examples
I've given here.

Event Handler Scripts

Okay, now lets take a look at what the event handler scripts look like...

Host Event Handleh@ndle-master-host-event
#/bin/sh

Only take action on hard host states...
case "$2" in
HARD)
case "$1"in
DOWN)
The master host has gone down!
We should now become the master host and take
over the responsibilities of monitoring the
network, so enable notifications...
lusr/local/nagios/libexec/eventhandlers/enable_notifications
UP)
The master host has recovered!
We should go back to being the slave host and
let the master host do the monitoring, so
disable notifications...
lusr/local/nagios/libexec/eventhandlers/disable_notifications

"

esac
esac
exit 0

Service Event Handlehéndle-master-proc-evgnt
#!/bin/sh

Only take action on hard service states...
case "$2" in
HARD)
case "$1" in
CRITICAL)
The master Nagios process is not running!
We should now become the master host and
take over the responsibility of monitoring

126

the network, so enable notifications...
lusr/local/nagios/libexec/eventhandlers/enable_notifications

WARNING)

UNKNOWN)
The master Nagios process may or may not
be running.. We won't do anything here, but
to be on the safe side you may decide you
want the slave host to become the master in
these situations...

OK)
The master Nagios process running again!
We should go back to being the slave host,
so disable notifications...
lusr/local/nagios/libexec/eventhandlers/disable_notifications

”

esac

esac
exit 0

What This Does ForUs

The slave host (host E) initially has notifications disabled, so it won’t send out any host or service
notifications while the Nagios process on the master host (host A) is still running.

The Nagios process on the slave host (host E) becomes the master host when...

e The master host (host A) goes down andiidnedle-master-host-evehost event handler is
executed.

® The Nagios process on the master host (host A) stops running drehthe-master-proc-event
service event handler is executed.

When the Nagios process on the slave host (host E) has notifications enabled, it will be able to send
out notifications about any service or host problems or recoveries. At this point host E has effectively
taken over the responsibility of notifying contacts of host and service problems!

The Nagios process on host E returns to being the slave host when...

® Host A recovers and tHeandle-master-host-evehost event handler is executed.

® The Nagios process on host A recovers andhéimelle-master-proc-eveservice event handler is
executed.

When the Nagios process on host E has notifications disabled, it will not send out notifications about
any service or host problems or recoveries. At this point host E has handed over the responsibilities of
notifying contacts of problems to the Nagios process on host A. Everything is now as it was when we
first started!

Time Lags

Redundancy in Nagios is by no means perfect. One of the more obvious problems is the lag time
between the master host failing and the slave host taking over. This is affected by the following...

127

® The time between a failure of the master host and the first time the slave host detects a problem

® The time needed to verify that the master host really does have a problem (using service or host
check retries on the slave host)

® The time between the execution of the event handler and the next time that Nagios checks for
external commands

You can minimize this lag by...

® Ensuring that the Nagios process on host E (re)checks one or more services at a high frequency.
This is done by using theheck_intervahndretry_intervalarguments in each service definition.

® Ensuring that the number of host rechecks for host A (on host E) allow for fast detection of host
problems. This is done by using ttmax_check_attemp&gument in the host definition.

® Increase the frequency|of external comnpand checks on host E. This is done by modifying the
[command check interyal option in the main configuration file.

When Nagios recovers on the host A, there is also some lag time before host E returns to being a slave
host. This is affected by the following...

® The time between a recovery of host A and the time the Nagios process on host E detects the
recovery

® The time between the execution of the event handler on host B and the next time the Nagios
process on host E checks for external commands

The exact lag times between the transfer of monitoring responsibilities will vary depending on how
many services you have defined, the interval at which services are checked, and a lot of pure chance.
At any rate, its definitely better than nothing.

SpecialCases

Here is one thing you should be aware of... If host A goes down, host E will have notifications enabled
and take over the responsibilities of notifying contacts of problems. When host A recovers, host E will
have notifications disabled. If - when host A recovers - the Nagios process on host A does not start up
properly, there will be a period of time when neither host is notifying contacts of problems! Fortu-
nately, the service check logic in Nagios accounts for this. The next time the Nagios process on host E
checks the status of the Nagios process on host A, it will find that it is not running. Host E will then
have notifications enabled again and take over all responsibilities of notifying contacts of problems.

The exact amount of time that neither host is monitoring the network is hard to determine. Obviously,
this period can be minimized by increasing the frequency of service checks (on host E) of the Nagios
process on host A. The rest is up to pure chance, but the total "blackout" time shouldn’t be too bad.

Scenario 2 - Failover Monitoring

Intro duction

Failover monitoring is similiar to, but slightly different than redundant monitoring (as discussed above

in[scenario[1).

Goals

128

The basic goal of failover monitoring is to have the Nagios process on the slave host sit idle while the
Nagios process on the master host is running. If the process on the master host stops running (or if the
host goes down), the Nagios process on the slave host starts monitoring everything.

While the method described[in scenafio 1 will allow you to continue receive notifications if the master
monitoring hosts goes down, it does have some pitfalls. The biggest problem is that the slave host is
monitoring the same hosts and servers as the nadter same time as the mastBnis can cause

problems with excessive traffic and load on the machines being monitored if you have a lot of services
defined. Here’s how you can get around that problem...

Initial Program_Settings

Disable active service checks and notifications on the slave host using the execute servi¢e checks and
[enable notifications directives. This will prevent the slave host from monitoring hosts and services

and sending out notifications while the Nagios process on the master host is still up and running. Make
sure you also have the check external comnpands directive enabled on the slave host.

Master ProcessCheck

Set up a cron job on the slave host that periodically (say every minute) runs a script that checks the
staus of the Nagios process on the master host (usichebk _nrpglugin on the slave host and the
[nrpe daemdn ancheck_nagioplugin on the master host). The script should check the return code of
thecheck_nrpe pluginlf it returns a non-OK state, the script should send the appropriate commands
to thel external command file to enable both notifications and active service checks. If the plugin
returns an OK state, the script should send commands to the external command file to disable both
notifications and active checks.

By doing this you end up with only one process monitoring hosts and services at a time, which is
much more efficient that monitoring everything twice.

Also of note, yowdon't need to define host and service handlers as mentiohed in scénario 1 because
things are handled differently.

Additional Issues

At this point, you have implemented a very basic failover monitoring setup. However, there is one
more thing you should consider doing to make things work smoother.

The big problem with the way things have been setup thus far is the fact that the slave host doesn't
have the current status of any services or hosts at the time it takes over the job of monitoring. One way
to solve this problem is to enable and on the master host and have it send all service
check results to the slave host using the nsca hddon. The slave host will then have up-to-date status
information for all services at the time it takes over the job of monitoring things. Since active service
checks are not enabled on the slave host, it will not actively run any service checks. However, it will
execute host checks if necessary. This means that both the master and slave hosts will be executing
host checks as needed, which is not really a big deal since the majority of monitoring deals with
service checks.

That's pretty much it as far as setup goes.

129

Detection and Handling of State Flapping

Intro duction

Nagios supports optional detection of hosts and services that are "flapping". Flapping occurs when a
service or host changes state too frequently, resulting in a storm of problem and recovery notifications.
Flapping can be indicative of configuration problems (i.e. thresholds set too low) or real network prob-
lems.

Before | go any futher, let me say that flapping detection has been a little difficult to implement. How
exactly does one determine what "too frequently" means in regards to state changes for a particular
host or service? When | first started looking into flap detection | tried to find some information on how
flapping could/should be detected. After | couldn’t find any, | decided to settle with what seemed to be
a reasonable solution. The methods by which Nagios detects service and host state flapping are
described below...

Service FlapDetedion

Whenever a service check is performed that resultf in a hald state or a soft recovery state, Nagios
checks to see if the services has started or stopped flapping. It does this by storing the results of the
last 21 checks of the service in an array. Older check results in the array are overwritten by newer
check results.

The contents of the historical state array are examined (in order from oldest result to newest result) to
determine the total percentage of change in state that has occurred during the last 21 service checks. A
state change occurs when an archived state is different from the archived state that immediately
precedes it in the array. Since we keep the results of the last 21 service checks in the array, there is a
possibility of having 20 state changes.

Image 1 below shows a chronological array of service states. OK states are shown in green,
WARNING states in yellow, CRITICAL states in red, and UNKNOWN states in orange. Blue arrows
have been placed over periods of time where state changes occur.

Image 1.
Service State Transitions
vy v v ¥)) L

[:E]
'
b

EEEN [| |

Lt ta0

Time S ——

Services that rarely change between states will have a lower total percentage of change than those that
do change between states a lot. Since flapping is associated with frequent state changes, we can use the
calculated amount of change in state over a period of time (in this case, the last 21 service checks) to

130

http://nagios.sourceforge.net/docs/2_0/images/statetransitions.png

determine whether or not a service is flapping. That's not quite good enough though...

It stands to reason that newer state changes should carry more weight than older state changes, so we
really need to recalculate the total percent change in state for the service on some sort of curve... To
make things simple, I've decided to make the relationship between time and weight linear for calcula-
tion of percent state change. The flap detection routines are currently designed to make the newest
possible state change carry 50% more weight than the oldest possible state change. Image 2 shows
how more recent state changes are given more weight than older state changes when calculating the
overall or total percent state change for a particular service. If you really want to see exactly how the
weighted calculation is done, look at the codbagre/flapping.c.

Image 2.

Weighted State Transitions

Weight
sSa=
[--1—1,%]

Time = ——

Let's look at a quick example of how flap detection is done. Image 1 above depicts the array of histori-
cal service check results for a particular service. The oldest result is on the left and the newest result is
on the right. We see that in the example below there were a total of 7 state changes, (&}, ttg,

t12, t16, and g). Without any weighting of the state changes over time, this would give us a total

state change of 35% (7 state changes out of a possible 20 state changes). When the individual state
changes are weighted relative to the time at which they occurred, the resulting total percent state
change for the service is less than 35%. This makes sense since most of the state changes occurred
earlier rather than later. Let’s just say that the weighted percent of state change turned out to be 31%...

So what significance does the 31% state change have? Well, if the service was prauidlagiping

and 31% isqual to or greater thathe value specified by the high service flap threshold option in
the service definition, Nagios considers the service to have just started flapping. If thevgasvice
previously flapping and 31% less than or equal tthe value specified by the

[low service flap threshqld value in the service definition, Nagios considers the service to have just
stopped flapping. If either of those two conditions are not met, Nagios does nothing else with the
service, since it is either not currently flapping or it is still flapping...

Host Flap Detedion

Host flap detection works in a similiar manner to service flap detection, with one important difference:
Nagios will attempt to check to see if a host is flapping whenever the status of the host is ahdcked
whenever a service associated with that host is checked. Why is this done? Well, with services we
know that the minimum amount of time between consecutive flap detection routines is going to be
eqgual to the service check interval. With hosts, we don't have a check interval, since hosts are not
monitored on a regular basis - they are only checked as necessary. A host will be checked for flapping
if its state has changed since the last time the flap detection was performed for toaiflissstate

131

http://nagios.sourceforge.net/docs/2_0/images/statetransitions2.png

has not changed but at leastmount of time has passed since the flap detection was performed. The
amount of time is equal to the average check interval of all services associated with the host. That's
the best method | could come up with for determining how often flap detection could be performed on
a host...

Just as with services, Nagios stores the results of the last 21 of these host checks in an array for the
flap detection logic. State changes are weighted based on the time at which they occurred, and the total
percent change in state is calculated in the same manner that it is in the service flapping logic.

If a host was previouslgot flapping and its total computed state change percentaggiéd to or

greater thanthe value specified by the high host flap threghold option, Nagios considers the host to
have just started flapping. If the hegispreviously flapping and its total computed state change
percentage ikess than or equal tthe value specified by the low host flap threshold value, Nagios
considers the host to have just stopped flapping. If either of those two conditions are not met, Nagios
does nothing else with the host, since it is either not currently flapping or it is still flapping...

Host- and Service-Specific Flafpetedion Thresholds

If you're using th¢ template-based object definition ffiles, you can specify host- and service-specific
flap detection thresholds by addileyv_flap_threshold andhigh_flap_threshold directives to indi-
vidual host and service definitions. If these directivesat@resent in the host or service definitions,
the global host and service flap detection thresholds will be used.

On a similiar note, you can also enable/disable flap detection for specific hosts and services by using
theenable_flap_detectiordirective in each object definition. Note that flap detection must be enabled
on a program-wide basis (using the enable flap detgction directive in the main config file) in order for
any host or service to have flap detection enabled.

Flap Handling

When a service or host is first detected as flapping, Nagios will do three things:

1. Log a message indicating that the service or host is flapping
2. Add a non-persistent comment to the host or service indicating that it is flapping
3. Supress natifications for the service or host (this is one of the filterg in the notificatipn logic)

When a service or host stops flapping, Nagios will do the following:

1. Log a message indicating that the service or host has stopped flapping

2. Delete the comment that was originally added to the service or host when it started flapping

3. Remove the block on natifications for the service or host (notifications will still be bound to the
normal notification logic)

132

Service Check Parallelization

Intro duction

One of the features of Nagios is its ability to execute service checks in parallel. This documentation
will attempt to explain in detail what that means and how it affects services that you have defined.

How The Parallelization Works

Before | can explain how the service check parallelization works, you first have to understand a bit
about how Nagios schedules events. All internal events in Nagios (i.e. log file rotations, external
command checks, service checks, etc.) are placed in an event queue. Each item in the event queue has
a time at which it is scheduled to be executed. Nagios does its best to ensure that all events get
executed when they should, although events may fall behing schedule if Nagios is busy doing other
things.

Service checks are one type of event that get scheduled in Nagios’ event queue. When it comes time
for a service check to be executed, Nagios will kick off another process (using a call to fork()) to go
out and run the service check (i.e. a plugin of some sort). Nagiondpbswever, wait for the

service check to finish! Instead, Nagios will immediately go back to servicing other events that reside
in the event queue...

So what happens when the service check finishes executing? Well, the process that was started by
Nagios to run the service check sends a message back to Nagios containing the results of the service
check. It is then up to Nagios to check for and process the results of that service check when it gets a
chance.

In order for Nagios to actually do any monitoring, it much process the results of service checks that
have finished executing. This is done via a service check "reaper" process. Service "reapers” are
another type of event that get scheduled in Nagios’ event queue. The frequency of these "reaper"
events is determined by the service reaper freqliency option in the main configuration file. When a
"reaper" event is executed, it will check for any messages that contain the result of service checks that
have finished executing. These service check results are then handled by the core service monitoring
logic. From there Nagios determines whether or not hosts should be checked, notifications should be
sent out, etc. When the service check results have been processed, Nagios will reschedule the next
check of the service and place it in the event queue for later execution. That completes the service
check/monitoring cycle!

For those of you who really want to know, but haven't looked at the code, Nagios uses message
gueues to handle communication between Nagios and the process that actually runs the service
check...

Potertial Gotchas...

You should realize that there are potential drawbacks to having service checks parallelized. Since
more than one service check may be running at the same time, they have may interfere with one
another. You'll have to evaluate what types of service checks you're running and take appropriate
steps to guard against any unfriendly outcomes. This is particularly important if you have more than
one service check that accesses any hardware (like a modem). Also, if two or more service checks
connect to daemon on a remote host to check some information, make sure that daemon can handle
multiple simultaneous connections.

133

Fortunately, there are some things you can do to protect against problems with having some types of
service checks "collide"...

1. The easiest thing you can do to prevent service check collisions to to[use the servjce_inter-
[eave factdr variable. Interleaving services will help to reduce the load imposed upon remote
hosts by service checks. Set the variable to use "smart" interleave factor calculation and then
adjust it manually if you find it necessary to do so.

2. The second thing you can do is to setnilag_check_attempssgument in each service definition
to something greater than one. If the service check does happen to collide with another running
check, Nagios will retry the service chaolax_check_attemptstimes before notifying anyone
of a problem.

3. You could try is to implement some kind of "back-off and retry" logic in the actual service check
code, although you may find it difficult or too time-consuming

4. If all else fails you can effectively prevent service checks from being parallelized by setting the
[max_concurrent _chedks option to 1. This will allow only one service to be checked at a time, so
it isn’t a spectacular solution. If there is enough demand, | will add an option to the service defini-
tions which will allow you to specify on a per-service basis whether or not a service check can be
parallelized. If there isn't enough demand, | won't...

One other thing to note is the effect that parallelization of service checks can have on system resources
on the machine that runs Nagios. Running a lot of service checks in parallel can be taxing on the CPU
and memory. The inter_check delay method will attempt to minimize the load imposed on your
machine by spreading the checks out evenly over time (if you use the "smart" method), but it isn't a
surefire solution. In order to have some control over how many service checks can be run at any given
time, use the max concurrent chgcks variable. You'll have to tweak this value based on the total
number of services you check, the system resources you have available (CPU speed, memory, etc.),
and other processes which are running on your machine. For more information on how to tweak the
max_concurrent_checkariable for your setup, read the documentation on check schegduling.

What Isn’t Parallelized

It is important to remember that only theecutiorof service checks has been parallelized. There is
good reason for this - other things cannot be parallelized in a very safe or sane manner. In particular,
event handlers, contact notifications, processing of service checks, and host cheokpaaed-

lelized. Here’s why...

Event handlersre not parallelized because of what they are designed to do. Much of the power of
event handlers comes from the ability to do proactive problem resultion. An example of this is restart-
ing the web server when the HTTP service on the local machine is detected as being down. In order to
prevent more than one event handler from trying to "fix" problems in parallel (without any knowledge
of what each other is doing), | have decided to not parallelize them.

Contact notificationsre not parallelized because of potential notification methods you may be using.

If, for example, a contact notification uses a modem to dial out and send a message to your pager, it
requires exclusive access to the modem while the notification is in progress. If two or more such noti-
fications were being executed in parallel, all but one would fail because the others could not get access
to the modem. There are ways to get around this, like providing some kind of "back-off and retry"
method in the notification script, but I've decided not to rely on users having implemented this type of
feature in their scripts. One quick note - if you have service checks which use a modem, make sure
that any notification scripts that dial out have some method of retrying access to the modem. This is
necessary because a service check may be running at the same time a notification is!

134

Processing of service check resuits not been parallelized. This has been done to prevent situations
where multiple notifications about host problems or recoveries may be sent out if a host goes down,
becomes unreachable, or recovers.

135

Notification Escalations

Intro duction

Nagios supporteptional escalation of contact notifications for hosts and services. I'll explain quickly
how they work, although they should be fairly self-explanatory...

ServiceNotification Escdations

Escalation of service notifications is accomplished by deffning service escalations[in your object
[configuration fil¢. Service escalation definitions are used to escalate notifications for a particular
service.

Host Notification Escdations

Escalation of host notifications is accomplished by defihing host escalations [n your object cdnfigura-
ftion file] The examples | provide below all use service escalation definitions, but host escalations work
the same way (except for the fact that they are used for host notifications and not service notifications).

When Are Notifications Escdated?

Notifications are escalatéfdand only ifone or more escalation definitions matches the current notifi-
cation that is being sent out. If a host or service notificatas nohave any valid escalation defini-
tions that applies to it, the contact group(s) specified in either the host group or service definition will
be used for the notification. Look at the example below:

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 3
last_notification 5
notification_interval 90
contact_groups nt-admins,managers

}

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 6
last_notification 10
notification_interval 60
contact_groups nt-admins,managers,everyone

}

Notice that there are "holes" in the notification escalation definitions. In particular, notifications 1 and

2 are not handled by the escalations, nor are any notifications beyond 10. For the first and second noti-
fication, as well as all notifications beyond the tenth onedd#faultcontact groups specified in the

service definition are used. For all the examples I'll be using, I'll be assuming that the default contact
groups for the service definition is calleiadmins

Contact Groups

136

When defining notification escalations, it is important to keep in mind that any contact groups that
were members of "lower" escalations (i.e. those with lower notification number ranges) should also be
included in "higher" escalation definitions. This should be done to ensure that anyone who gets noti-
fied of a problentontinuedo get notified as the problem is escalated. Example:

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 3
last_notification 5
notification_interval 90
contact_groups nt-admins,managers

}

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 6
last_notification 0
notification_interval 60
contact_groups nt-admins,managers,everyone

}

The first (or "lowest") escalation level includes bothrthadminsandmanagersontact groups. The

last (or "highest") escalation level includes titeadming managersandeveryonecontact groups.

Notice that thent-adminscontact group is included in both escalation definitions. This is done so that
they continue to get paged if there are still problems after the first two service notifications are sent
out. Themanagerscontact group first appears in the "lower" escalation definition - they are first noti-
fied when the third problem notification gets sent out. We wanhtmeagergroup to continue to be
notified if the problem continues past five notifications, so they are also included in the "higher" esca-
lation definition.

Overlapping Escdation Ranges

Notification escalation definitions can have notification ranges that overlap. Take the following
example:

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 3
last_notification 5
notification_interval 20
contact_groups nt-admins,managers

}

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 4
last_notification 0
notification_interval 30
contact_groups on-call-support

}

137

In the example above:

® Thent-adminsandmanagersontact groups get notified on the third notification
® All three contact groups get notified on the fourth and fifth notifications
® Only theon-call-supportcontact group gets notified on the sixth (or higher) notification

Recowery Notifications

Recovery notifications are slightly different than problem notifications when it comes to escalations.
Take the following example:

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 3
last_notification 5
notification_interval 20
contact_groups nt-admins,managers

}

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 4
last_notification 0
notification_interval 30
contact_groups on-call-support

}

If, after three problem notifications, a recovery notification is sent out for the service, who gets noti-
fied? The recovery is actually the fourth notification that gets sent out. However, the escalation code is
smart enough to realize that only those people who were notified about the problem on the third notifi-
cation should be notified about the recovery. In this casatthdminsandmanagersontact groups

would be notified of the recovery.

Notification Inter vals

You can change the frequency at which escalated notifications are sent out for a particular host or
service by using theotification_intervaloption of the hostgroup or service escalation definition.
Example:

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 3
last_notification 5
notification_interval 45
contact_groups nt-admins,managers

}

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 6
last_notification 0
notification_interval 60
contact_groups nt-admins,managers,everyone

}

138

In this example we see that the default notification interval for the services is 240 minutes (this is the
value in the service definition). When the service notification is escalated on the 3rd, 4th, and 5th noti-
fications, an interval of 45 minutes will be used between notifications. On the 6th and subsequent noti-
fications, the notification interval will be 60 minutes, as specified in the second escalation definition.

Since it is possible to have overlapping escalation definitions for a particular hostgroup or service, and
the fact that a host can be a member of multiple hostgroups, Nagios has to make a decision on what to
do as far as the notification interval is concerned when escalation definitions overlap. In any case
where there are multiple valid escalation definitions for a particular notification, Nagios will choose

the smallest notification interval. Take the following example:

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 3
last_notification 5
notification_interval 45
contact_groups nt-admins,managers

}

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 4
last_notification 0
notification_interval 60
contact_groups nt-admins,managers,everyone

}

We see that the two escalation definitions overlap on the 4th and 5th notifications. For these notifica-
tions, Nagios will use a natification interval of 45 minutes, since it is the smallest interval present in
any valid escalation definitions for those notifications.

One last note about notification intervals deals with intervals of 0. An interval of 0 means that Nagios
should only sent a natification out for the first valid notification during that escalation definition. All
subsequent notifications for the hostgroup or service will be suppressed. Take this example:

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 3
last_notification 5
notification_interval 45
contact_groups nt-admins,managers

}

define serviceescalation{
host_name webserver
service_description HTTP
first_notification 4
last_notification 6
notification_interval 0
contact_groups nt-admins,managers,everyone

}

define serviceescalation{
host_name webserver
service_description HTTP

139

first_notification 7

last_notification 0

notification_interval 30

contact_groups nt-admins,managers

}

In the example above, the maximum number of problem notifications that could be sent out about the
service would be four. This is because the notification interval of 0 in the second escalation definition
indicates that only one notification should be sent out (starting with and including the 4th notification)
and all subsequent notifications should be repressed. Because of this, the third service escalation defi-
nition has no effect whatsoever, as there will never be more than four notifications.

Time Period Restrictions

Under normal circumstances, escalations can be used at any time that a notification could normally be
sent out for the service. This "notification time window" is determined bgdtification_period
directive in the service definitipn.

You can optionally restrict escalations so that they are only used during specific time periods by using
theescalation_periodlirective in the service escalation definition. If you useefwalation_period

directive to specify p_timeperipd during which the escalation can be used, the escalation will only be
used during that time. If you do not specify @sgalation_periodlirective, the escalation can be used

at any time within the "notification time window" for the service.

Note that the notification is still subject to the normal time restrictions imposed hytifiea-
tion_perioddirective in the service escalation, so the timeperiod you specify in the escalation should
be a subset of that larger "notification time window".

State Restrictions

If you would like to restrict the escalation definition so that it is only used when the service is in a
particular state, you can use #sxalation_optionsgirective in th¢ service escalation definition. If you
do not use thescalation_optionsgirective, the escalation can be used when the service is in any state.

140

Monitoring Service and Host Clusters

Intro duction

Several people have asked how to go about monitoring clusters of hosts or services, so | decided to
write up a little documentation on how to do this. Its fairly straightforward, so hopefully you find
things easy to understand...

First off, we need to define what we mean by a "cluster". The simplest way to understand this is with
an example. Let's say that your organization has five hosts which provide redundant DNS services to
your organization. If one of them fails, its not a major catastrophe because the remaining servers will
continue to provide name resolution services. If you're concerned with monitoring the availability of
DNS service to your organization, you will want to monitor five DNS servers. This is what | consider
to be aservicecluster. The service cluster consists of five separate DNS services that you are monitor-
ing. Although you do want to monitor each individual service, your main concern is with the overall
status of the DNS service cluster, rather than the availability of any one particular service.

If your organization has a group of hosts that provide a high-availability (clustering) solution, | would
consider those to betmstcluster. If one particular host fails, another will step in to take over all the
duties of the failed server. As a side note, check olit the High-Availability Linux Project for informa-
tion on providing host and service redundancy with Linux.

Plan of Attack

There are several ways you could potentially monitor service or host clusters. I'll describe the method
that | believe to be the easiest. Monitoring service or host clusters involves two things:

® Monitoring individual cluster elements
® Monitoring the cluster as a collective entity

Monitoring individual host or service cluster elements is easier than you think. In fact, you're probably
already doing it. For service clusters, just make sure that you are monitoring each service element of
the cluster. If you've got a cluster of five DNS servers, make sure you have five separate service defi-
nitions (probably using theheck _dngplugin). For host clusters, make sure you have configured
appropriate host definitions for each member of the cluster (you'll also have to define at least one
service to be monitored for each of the hostsportant: You're going to want to disable notifica-

tions for the individual cluster elements (host or service definitions). Even though no notifications will
be sent about the individual elements, you'll still get a visual display of the individual host or service
status in thg status GGI. This will be useful for pinpointing the source of problems within the cluster in
the future.

Monitoring the overall cluster can be done by using the previously cached results of cluster elements.
Although you could re-check all elements of the cluster to determine the cluster’s status, why waste
bandwidth and resources when you already have the results cached? Where are the results cached?
Cached results for cluster elements can be found [n the staftus file (assuming you are monitoring each
element). Theheck_clusterdlugin is designed specifically for checking cached host and service
states in the status filamportant: Although you didn’t enable natifications for individual elements of
the cluster, you will want them enabled for the overall cluster status check.

141

http://www.linux-ha.org/

Using thecheck cluster2 Plugin

The check_cluster2 plugin is designed to report the overall status of a host or service cluster by check-
ing the status information of each individual host or service cluster elements.

More to come... Theheck_clusterplugin can be found in the contrib directory of the Nagios Plugins
release at http://sourceforge.net/projects/nagiogplug/.

Monitoring ServiceClusters

Let's say you have three DNS servers that provide redundant services on your network. First off, you
need to be monitoring each of these DNS servers seperately before you can monitor them as a cluster.
I'll assume that you already have three seperate services (all called "DNS Service") associated with
your DNS hosts (called "host1", "host2" and "host3").

In order to monitor the services as a cluster, you'll need to create a new "cluster" service. However,
before you do that, make sure you have a service cluster check command configured. Let's assume
that you have a command callgteck_service_clusteiefined as follows:
define command{

command_name check_service_cluster

command_line /usr/local/nagios/libexec/check_cluster2 --service -| $ARG1$ -w $ARG2$ -¢c $ARG3$ -d $ARG4AS$
}

Now you'll need to create the "cluster" service and usehbek service clusteommand you just

created as the cluster’'s check command. The example below gives an example of how to do this. The
example below will generate a CRITICAL alert if 2 or more services in the cluster are in a non-OK
state, and a WARNING alert if only 1 of the services is in a non-OK state. If all the individual service
members of the cluster are OK, the cluster check will return an OK state as well.

define service{
check_conmmand check_service_cluster!"DNS C uster"! 1! 2! $SERVI CESTATEI D: host 1: DNS Ser vi ce
}

It is important to notice that we are passing a comma-delimited lst-demandervice state macios

to the $ARG4$ macro in the cluster check command. That's important! Nagios will fill those
on-demand macros in with the current service state IDs (numerical values, rather than text strings) of
the individual members of the cluster.

Monitoring Host Clusters

Monitoring host clusters is very similiar to monitoring service clusters. Obviously, the main difference
is that the cluster members are hosts and not services. In order to monitor the status of a host cluster,
you must define a service that usesdaheck_clusterplugin. The service shoultbt be associated

with any of the hosts in the cluster, as this will cause problems with notifications for the cluster if that
host goes down. A good idea might be to associate the service with the host that Nagios is running on.
After all, if the host that Nagios is running on goes down, then Nagios isn’t running anymore, so there
isn’t anything you can do as far as monitoring (unless you've getup redundant monitoring hosts)...

Anyway, let's assume that you haveleeck_host_clusterommand defined as follows:

142

http://sourceforge.net/projects/nagiosplug/

define command{
command_name check_host_cluster
command_line /usr/local/nagios/libexec/check_cluster2 --host -l $ARG1$ -w $ARG2$ -¢c $ARG3$ -d SARG4AS
}

Let's say you have three hosts (hamed "host1", "host2" and "host3") in the host cluster. If you want
Nagios to generate a warning alert if one host in the cluster is not UP or a critical alert if two or more
hosts are not UP, the the service you define to monitor the host cluster might look something like this:

define service{

check _command check_host _cluster!"Super Host C uster"!1!2! $HOSTSTATEI D: host 1$, $HOSTSTAT
}

It is important to notice that we are passing a comma-delimited kst-demandost state macrps to

the $ARG4$ macro in the cluster check command. That's important! Nagios will fill those on-demand
macros in with the current host state IDs (numerical values, rather than text strings) of the individual
members of the cluster.

That's it! Nagios will periodically check the status of the host cluster and send notifications to you
when its status is degraded (assuming you’'ve enabled notification for the service). Note that for
thehost definitions of each cluster member, you will most likely want to disable notifications when the
host goes down . Remeber that you don’t care as much about the status of any individual host as you
do the overall status of the cluster. Depending on your network layout and what you're trying to
accomplish, you may wish to leave notifications for unreachable states enabled for the host definitions.

143

Host and Service Dependencies

Intro duction

Service and host dependencies aradrancedeature that allow you to control the behavior of hosts
and services based on the status of one or more other hosts or services. I'll explain how dependencies
work, along with the differences between host and service dependencies.

ServiceDeperdenciesOverview

The image below shows an example logical layout of service dependencies. There are a few things you
should notice:

A service can be dependent on one or more other services

A service can be dependent on services which are not associated with the same host
Service dependencies are not inherited (unless specifically configured to)

Service dependencies can be used to cause service execution and service notifications to be
suppressed under different circumstances (OK, WARNING, UNKNOWN, and/or CRITICAL

states)

bRk

144

Service Dependencies

Service A Service B
{On Host 4) {On Host 4)
A A

EXFCUTION FAR URE EXFCUTION FAR URE
OPTIONS: warnin %

EXEFCUTION FAR URE SHEnaa b DERIONS fhnke)

OPTIONS: nnknowh NOTIFICATION
NOTIFICATION FAK URF OPTIONS:

NOTIFICATION FARURE OPTIONS: warning, unknown,

FAI URE OPTIONS: critical critical

rhane)

FXFCUTION FAR URE
OPTIONS: warning
NOTIFICATION
FAIL URE OPTIONS:
critical
EXECUTION FARL URE f})j‘;i;fgg?ﬂ FALURE
QPTIONS: o T (nane)
NOTIFICATION NOTIFICATION
FAN URE OPTIONS: FAI URE OPTIONS:

wWarning, dhknown

Warning, Bnknown,

critical

Defining ServiceDeperdencies

First, the basics. You create service dependencies by adding service dependency definitions in your
[object config file(q). In each definition you specify tlependenservice, the service you atepend-

ing on and the criteria (if any) that cause the execution and notification dependencies to fail (these are
described later).

You can create several dependencies for a given service, but you must add a separate service depen-
dency definition for each dependency you create.

In the image above, the dependency definitionStawice FonHost Cwould be defined as follows:

define servicedependency{

host_name Host B
service_description Service D
dependent_host_name Host C

dependent_service_description Service F

145

http://nagios.sourceforge.net/docs/2_0/images/service-dependencies.png

execution_failure_criteria o
notification_failure_criteria w,u

}

define servicedependency{
host_name Host B
service_description Service E
dependent_host_name Host C

dependent_service_description Service F
execution_failure_criteria n
notification_failure_criteria w,u,c

}

define servicedependency{
host_name Host B
service_description Service C
dependent_host_name Host C

dependent_service_description Service F
execution_failure_criteria w
notification_failure_criteria ¢

}
The other dependency definitions shown in the image above would be defined as follows:

define servicedependency{

host_name Host A
service_description Service A
dependent_host_name Host B

dependent_service_description Service D
execution_failure_criteria u
notification_failure_criteria n

}

define servicedependency{
host_name Host A
service_description Service B
dependent_host_name Host B

dependent_service_description Service E
execution_failure_criteria w,u
notification_failure_criteria ¢

}

define servicedependency{
host_name Host B
service_description Service C
dependent_host_name Host B

dependent_service_description Service E
execution_failure_criteria n
notification_failure_criteria w,u,c

}

How ServiceDeperdenciesAre Tested

Before Nagios executes a service check or sends notifications out for a service, it will check to see if
the service has any dependencies. If it doesn’'t have any dependencies, the check is executed or the
notification is sent out as it normally would be. If the serdiceshave one or more dependencies,
Nagios will check each dependency entry as follows:

146

1. Nagios gets the current st@lusf the service that is beirppended upon

2. Nagios compares the current status of the service that isdegiagded upoagainst either the
execution or notification failure options in the dependency definition (whichever one is relevant
at the time).

3. If the current status of the service that is beieyggended upomatches one of the failure options,
the dependency is said to have failed and Nagios will break out of the dependency check loop.

4. If the current state of the service that is beiegended upodoes not match any of the failure
options for the dependency entry, the dependency is said to have passed and Nagios will go on
and check the next dependency entry.

This cycle continues until either all dependencies for the service have been checked or until one
dependency check fails.

" One important thing to note is that by default, Nagios will use the most durrent hard state of the
service(s) that is/are being depended upon when it does the dependeny checks. If you want Nagios to
use the most current state of the services (regardless of whether its a soft or hard state), enable the
[soft_service dependendies option.

Execuion Deperdencies

Execution dependencies are used to restrict \aoénechecks of a service can be performed. Passive
checks are not restricted by execution dependencies.

If all of the execution dependency tests for the sepassedNagios will execute the check of the

service as it normally would. If even just one of the execution dependencies for a service fails, Nagios
will temporarily prevent the execution of checks for that (dependent) service. At some point in the
future the execution dependency tests for the service may all pass. If this happens, Nagios will start
checking the service again as it normally would. More information on the check scheduling logic can
be found hele.

In the example abov&ervice Ewould have failed execution dependencielafvice Bis in a
WARNING or UNKNOWN state. If this was the case, the service check would not be performed and
the check would be scheduled for (potential) execution at a later time.

Notification Deperdencies

If all of the notification dependency tests for the serpigsedNagios will send natifications out for

the service as it normally would. If even just one of the notification dependencies for a service fails,
Nagios will temporarily repress notifications for that (dependent) service. At some point in the future
the notification dependency tests for the service may all pass. If this happens, Nagios will start sending
out notifications again as it normally would for the service. More information on the notification logic

can be founfl hefre.

In the example abov&ervice Fwould have failed notification dependencieSérvice Cis in a
CRITICAL state,and/orService Dis in a WARNING or UNKNOWN stateand/orif Service Eis in

a WARNING, UNKNOWN, or CRITICAL state. If this were the case, notifications for the service
would not be sent out.

Deperdencylnheritance

147

As mentioned before, service dependenciesarmherited by default. In the example above you can

see that Service F is dependent on Service E. However, it does not automatically inherit Service E’s
dependencies on Service B and Service C. In order to make Service F dependent on Service C we had
to add another service dependency definition. There is no dependency definition for Service B, so
Service F is1otdependent on Service B.

If you dowish to make service dependencies inheritable, you must usdnéngs_parendirective in
the|service dependency definition. When this directive is enabled, it indicates that the dependency
inherits dependencies of the servicat is being depended upalso referred to as the master

service). In other words, if the master service is dependent upon other services and any one of those
dependencies fail, this dependency will also fail.

In the example above, imagine that you want to add a new dependency for service F to make it depen-
dent on service A. You could create a new dependency definition that specified service depsiihe
dentservice and service A as being thasterservice (i.e. the servidbat is being dependend)on

You could alternatively modify the dependency definition for services D and F to look like this:

define servicedependency{

host_name Host B
service_description Service D
dependent_host_name Host C

dependent_service_description Service F
execution_failure_criteria o
notification_failure_criteria n
inherits_parent 1

}

Since thenherits_parendirective is enabled, the dependency between services A and D will be tested
when the dependency between services F and D are being tested.

Dependencies can have multiple levels of inheritence. If the dependency definition between A and D
had itsinherits_parendirective enable and service A was dependent on some other service (let’s call
it service G), the service F would be dependent on services D, A, and G (each with potentially differ-
ent criteria).

Host Deperdencies

As you’d probably expect, host dependencies work in a similiar fashion to service dependencies. The
big difference is that they're for hosts, not services. Another difference is that host dependencies only
work for suppressing host notifications, not host checks.

BEWARE! Do not confuse host dependencies with parent/child host relationships. You should be
using parent/child host relationships (defined withgheentsdirective i hogt definitions) for most
cases, rather than host dependencies.

The image below shows an example of the logical layout of host dependencies.

148

Host Dependencies

Host A Host A

NOTEICA TION
FANLURE OFTIONS:
dovn,unreachabie

NOTIENCATION
FAWLURE QP TIONS:
iR

HOTHEICA TION
FAILURE QP TIONE:

e Lt gt g baie

HostC

In the image above, the dependency definitionsgifust Cwould be defined as follows:

define hostdependency{

host_name Host A
dependent_host_name Host C
notification_failure_criteria d
}

define hostdependency{
host_name Host B
dependent_host_name Host C

notification_failure_criteria d,u

}

As with service dependencies, host dependencies are not inherited. In the example image you can see
that Host C does not inherit the host dependencies of Host B. In order for Host C to be dependent on
Host A, a new host dependency definition must be defined.

149

http://nagios.sourceforge.net/docs/2_0/images/host-dependencies.png

Host notification dependencies work in a similiar manner to service notification dependeraties. If

the naotification dependency tests for the tpzsts Nagios will send notifications out for the host as it
normally would. If even just one of the notification dependencies for a host fails, Nagios will
temporarily repress notifications for that (dependent) host. At some point in the future the notification
dependency tests for the host may all pass. If this happens, Nagios will start sending out notifications
again as it normally would for the host. More information on the notification logic can be[fouhd here.

NOTE: Host execution dependencies work in a similiar manner to service execution dependencies.
However, they only have an affect mgularly scheduled host check3n-demand host checks are not
affected by host execution dependencies.

150

State Stalking

Intro duction

State "stalking" is a feature which is probably not going to used by most users. When enabled, it
allows you to log changes in service and host checks even if the state of the host or service does not
change. When stalking is enabled for a particular host or service, Nagios will watch that service very
carefully and log any changes it sees. As you'll see, it can be very helpful to you in later analysis of
the log files.

How Does ItWork?

Under normal circumstances, the result of a host or service check is only logged if the host or service
has changed state since it was last checked. There are a few exceptions to this, but for the most part,
that’s the rule.

If you enable stalking for one or more states of a particular host or service, Nagios will log the results
of the host or service check if the output from the check differs from the output from the previous
check. Take the following example of eight consecutive checks of a service:

¢S#:ervice Check gg,zg?e Service Check Output:

X OK RAID array optimal

x+1 OK RAID array optimal

X+2 WARNING | RAID array degraded (1 drive bad, 1 hot spare rebuilding)
w43 CRITICAL SRI;AaIg ?(rarg:la/”giei%rfded (2 drives bad, 1 host spare online, 1 hot
x+4 CRIICAL RAID array degraded (3 drives bad, 2 hot spares online)

X+5 CRITICAL RAID array failed

X+6 CRITICAL RAID array failed

X+7 CRITICAL RAID array failed

Given this sequence of checks, you would normally only see two log entries for this catastrophe. The
first one would occur at service check x+2 when the service changed from an OK state to a
WARNING state. The second log entry would occur at service check x+3 when the service changed
from a WARNING state to a CRITICAL state.

For whatever reason, you may like to have the complete history of this catasrophe in your log files.
Perhaps to help explain to your manager how quickly the situation got out of control, perhaps just to
laugh at over a couple of drinks at the local pub, whatever...

Well, if you had enabled stalking of this service for CRITICAL states, you would have events at x+4
and x+5 logged in addition to the events at x+2 and x+3. Why is this? With state stalking enabled,
Nagios would have examined the output from each service check to see if it differed from the output of

151

the previous check. If the output differed and the state of the service didn’'t change between the two
checks, the result of the newer service check would get logged.

A similiar example of stalking might be on a service that checks your web server. If the check_http
plugin first returns a WARNING state because of a 404 error and on subsequent checks returns a
WARNING state because of a particular pattern not being found, you might want to know that. If you
didn’t enable state stalking for WARNING states of the service, only the first WARNING state event
(the 404 error) would be logged and you wouldn’t have any idea (looking back in the archived logs)
that future problems were not due to a 404, but rather a missing pattern in the returned web page.

Should | Enable Stalking?

First, you must decide if you have a real need to analyze archived log data to find the exact cause of a
problem. You may decide you need this feature for some hosts or services, but not for all. You may
also find that you only have a need to enable stalking for some host or service states, rather than all of
them. For example, you may decide to enable stalking for WARNING and CRITICAL states of a
service, but not for OK and UNKNOWN states.

The decision to to enable state stalking for a particular host or service will also depend on the plugin
that you use to check that host or service. If the plugin always returns the same text output for a partic-
ular state, there is no reason to enable stalking for that state.

How Do | Enable Stalking?

You can enable state stalking for hosts and services by usistatkiag_optionslirective i host anjd
[service definitions.

Caveats

You should be aware that there are some potential pitfalls with enabling stalking. These all relate to
the reporting functions found in variqus C[GIs (histogram, alert summary, etc.). Because state stalking
will cause additional alert entries to be logged, the data produced by the reports will show evidence of
inflated numbers of alerts.

As a general rule, | would suggest that yatenable stalking for hosts and services without thinking
things through. Still, its there if you need and want it.

152

Performance Data

Intro duction

Nagios is designed to alldw plugjns to return optional performance data in addition to normal status
data, as well as allow you to pass that performance data to external applications for processing. A
description of the different types of performance data, as well as information on how to go about
processing that data is described below...

Types of PerformanceData

There are two basic categories of performance data that can be obtained from Nagios:

1. Check performance data
2. Plugin performance data

Check performance data internal data that relates to the actual execution of a host or service check.
This might include things like service check latency (i.e. how "late" was the service check from its
scheduled execution time) and the number of seconds a host or service check took to execute. This
type of performance data is available for all checks that are performed. The $SHOSTEXECUTION-
TIME$ and $SERVICEEXECUTIONTIMEf macros can be used to determine the number of seconds
a host or service check was running and the SHOSTLATENCY$ and $SERVICELATENCY$ macros
can be used to determine how "late" a regularly-scheduled host or service check was.

Plugin performance dates external data specific to the plugin used to perform the host or service

check. Plugin-specific data can include things like percent packet loss, free disk space, processor load,
number of current users, etc. - basically any type of metric that the plugin is measuring when it
executes. Plugin-specific performance data is optional and may not be supported by all plugins. As of
this writing, no plugins return performance data, although they mostly likely will in the near future.
Plugin-specific performance data (if available) can be obtained by using the $HOSTPERFDATAS$ and
$SERVICEPERFDATAS$ macrps. See below for more information on how plugins can return perfor-
mance data to Nagios for inclusion in the SHOSTPERFDATAS$ and $SERVICEPERFDATA$ macros.

PerformanceData Support For Plugins

Normally plugins return a single line of text that indicates the status of some type of measurable data.
For example, the check_ping plugin might return a line of text like the following:

PING ok - Packet loss = 0%, RTA = 0.80 ms

With this type of output, the entire line of text is available in the $HOSTOUTPUT$ or $SERVICE-
OUTPUTY macrds (depending on whether this plugin was used as a host check or service check).

In order to facilitate the passing of plugin-specific performance data to Nagios, the plugin specification
has been expanded. If a plugin wishes to pass performance data back to Nagios, it does so by sending
the normal text string that it usually would, followed by a pipe character (|), and then a string contain-

ing one or more performance data metrics. Let's take the check_ping plugin as an example and assume
that it has been enhanced to return percent packet loss and average round trip time as performance data
metrics. A sample plugin output might look like this:

153

PING ok - Packet loss = 0%, RTA = 0.80 ms | percent_packet_loss=0, rta=0.80

When Nagios seems this format of plugin output it will split the output into two parts: everything
before the pipe character is considered to be the "normal” plugin output and everything after the pipe
character is considered to be the plugin-specific performance data. The "normal” output gets stored in
the SHOSTOUTPUTS or $SERVICEOUTPUT$ macro, while the optional performance data gets
stored in the SHOSTPERFDATAS or $SERVICEPERFDATAS$ macro. In the example above, the
$HOSTOUTPUTS or $SERVICEOUTPUT$ macro would cont&fNG ok - Packet loss = 0%, RTA

= 0.80 m$ (without quotes) and the SHOSTPERFDATAS$ or $SERVICEPERFDATAS$ macro would
contain ‘percent_packet_loss=0, rta=0.8Qwithout quotes).

Format of PerformanceData Output

The Nagios daemon doesn’t directly process performance data, so it doesn’t really care what the
performance data looks like. There aren't really any inherent limitations on the format or content of
the performance data. However, if you are using an external addon to process the performance data
(i.e. PerfParse), the addon may be expecting that the plugin returns performance data in a specific
format. Check the documentation that comes with the addon for more information. Also, make sure to
check the plugin developer guidelines at SourceFprge (http://nagiosplug.sourcefgrge.net/) for informa-
tion on writing plugins.

Enabling PerformanceData Processng

If you want to process the performance data that is available from Nagios and the plugins, you'll need
to do the following:

1. Enable thg process performance |data option.
2. Configure Nagios so that performance data is written to files and/or processed by executing
commands.

You can have Nagios write all host and service performance data to files uging the host _peffdata_file
and service_perfdata_fjle options. You can control how the data is written to those files using the
[host perfdata_file_template gnd service perfdata file template options. Additionally, you can have
Nagios periodically execute commands to process the performance data files Using the host_perf-
[data_file_processing_command and service perfdata file_processing _cgmmand options.

You can have Nagios process host and service performance data by executing commands by using the
[host perfdata_command|or service _perfdata _command options. An example command definition that
simply writes service performance data to a file is shown below:

154

http://nagiosplug.sourceforge.net/

Scheduled Downtime

Intro duction

Nagios allows you to schedule periods of planned downtime for hosts and service that you’re monitor-
ing. This is useful in the event that you actually know you're going to be taking a server down for an
upgrade, etc. When a host a service is in a period of scheduled downtime, notifications for that host or
service will be suppressed.

Downtime File

Scheduled host and service downtime is stored in the file you specify[by the downt|me_file directive in
your main configuration file.

Downtime Retertion

Scheduled host and service downtime is automatically preserved across program restarts. When
Nagios starts up, it will scan the downtime]file, delete any old or invalid entries, and schedule down-
time for all valid host and service entries.

Schedulng Downtime

You can schedule downtime for hosts and service through the extinfo CGlI (either when viewing host
or service information). Click in the "Schedule downtime for this host/service" link to actually sched-
ule the downtime.

Once you schedule downtime for a host or service, Nagios will add a comment to that host/service
indicating that it is scheduled for downtime during the period of time you indicated. When that period
of downtime passes, Nagios will automatically delete the comment that it added. Nice, huh?

Fixed vs.Flexible Downtime

When you schedule downtime for a host or service through the web interface you'll be asked if the
downtime is fixed or flexible. Here’s an explanation of how "fixed" and "flexible" downtime differs:

"Fixed" downtime starts and stops at the exact start and end times that you specify when you schedule
it. Okay, that was easy enough...

"Flexible" downtime is intended for times when you know that a host or service is going to be down
for X minutes (or hours), but you don’t know exactly when that’ll start. When you schedule flexible
downtime, Nagios will start the scheduled downtime sometime between the start and end times you
specified. The downtime will last for as long as the duration you specified when you scheduled the
downtime. This assumes that the host or service for which you scheduled flexible downtime either
goes down (or becomes unreachable) or goes into a non-OK state sometime between the start and end
times you specified. The time at which a host or service transitions to a problem state determines the
time at which Nagios actually starts the downtime. The downtime will then last for the duration you
specified, even if the host or service recovers before the downtime expires. This is done for a very
good reason. As we all know, you can think you've got a problem fixed (and restart a server) ten times
before it actually works right. Smart, eh?

155

Trig gered Downtime

When scheduling host or service downtime you have the option of making it "triggered" downtime.
What is triggered downtime, you ask? With triggered downtime the start of the downtime is triggered
by the start of some other scheduled host or service downtime. This is extremely useful if you're
scheduling downtime for a large number or hosts or services and the start time of the downtime period
depends on the start time of another downtime entry. For instance, if you schedule flexible downtime
for a particular host (because its going down for maintenance), you might want to schedule triggered
downtime for all of that hosts’s "children".

How Schediled Downtime Affects Notifications

When a host or service is in a period of scheduled downtime, Nagios will not allow natifications to be
sent out for the host or service. suppression of notifications is accomplished by adding an additional
filter to the notification logic. You wilhot see an icon in the CGls indicating that notifications for that
host/service are disabled. When the scheduled downtime has passed, Nagios will allow notifications to
be sent out for the host or service as it normally would.

Overlapping Schediled Downtime

I like to refer to this as the "Oh crap, its not working" syndrome. You know what I'm talking about.
You take a server down to perform a "routine" hardware upgrade, only to later realize that the OS
drivers aren’t working, the RAID array blew up, or the drive imaging failed and left your original

disks useless to the world. Moral of the story is that any routine work on a server is quite likely to take
three or four times as long as you had originally planned...

Let’s take the following scenario:

[EEN

. You schedule downtime for host A from 7:30pm-9:30pm on a Monday

. You bring the server down about 7:45pm Monday evening to start a hard drive upgrade

. After wasting an hour and a half battling with SCSI errors and driver incompatabilities, you
finally get the machine to boot up

4. At 9:15 you realize that one of your partitions is either hosed or doesn’t seem to exist anywhere

on the drive

Knowing you're in for a long night, you go back and schedule additional downtime for host A

from 9:20pm Monday evening to 1:30am Tuesday Morning.

w N

o

If you schedule overlapping periods of downtime for a host or service (in this case the periods were

7:40pm-9:30pm and 9:20pm-1:30am), Nagios will wait until the last period of scheduled downtime is
over before it allows notifications to be sent out for that host or service. In this example notifications

would be suppressed for host A until 1:30am Tuesday morning.

156

Using The Embedded Perl Interpreter

Intro duction

Stephen Davies has contributed code that allows you to compile Nagios with an embedded Perl inter-
preter. This may be of interest to you if you rely heavily on plugins written in Perl.

Stanley Hopcroft has worked with the embedded Perl interpreter quite a bit and has commented on the
advantages/disadvanges of using it. He has also given several helpful hints on creating Perl plugins
that work properly with the embedded interpreter. The majority of this documentation comes from his
comments.

It should be noted that "ePN", as used in this documentation, refers to embedded Perl Nagios, or if you
prefer, Nagios compiled with an embedded Perl interpreter.

Advantages

Some advantages of ePN (embedded Perl Nagios) include:

e Nagios will spend much less time running your Perl plugins because it no longer forks to execute
the plugin (each time loading the Perl interpreter). Instead, it executes your plugin by making a
library call.

® |t greatly reduces the system impact of Perl plugins and/or allows you to run more checks with
Perl plugin than you otherwise would be able to. In other words, you have less incentive to write
plugins in other languages such as C/C++, or Expect/TCL, that are generally recognised to have
development times at least an order of magnitude slower than Perl (although they do run about
ten times faster also - TCL being an exception).

e |f you are not a C programmer, then you can still get a huge amount of mileage out of Nagios by
letting Perl do all the heavy lifting without having Nagios slow right down. Note however, that
the ePN will not speed up your plugin (apart from eliminating the interpreter load time). If you
want fast plugins then consider Perl XSUBs (XS), @ft€r you are sure that your Perl is tuned
and that you have a suitable algorithm (Benchmark.pgnvauablefor comparing the perfor-
mance of Perl language elements).

e Using the ePN is an excellentt opportunity to learn more about Perl.

Disadvantages

The disadvantages of ePN (embedded Perl Nagios) are much the same as Apache mod_perl (i.e.
Apache with an embedded interpreter) compared to a plain Apache:

e A Perl program that workfgne with plain Nagios mayot work with the ePN. You may have to
modify your plugins to get them to work.

Perl plugins are harder to debug under an ePN than under a plain Nagios.

Your ePN will have a larger SIZE (memory footprint) than a plain Nagios.

Some Perl constructs cannot be used or may behave differently than what you would expect.
You may have to be aware of ‘'more than one way to do it" and choose a way that seems less
attractive or obvious.

You will need greater Perl knowledge (but nothing very esoteric or stuff about Perl internals -
unless your plugin uses XSUBS).

157

Target Audience

® Average Perl developers; those with an appreciation of the languages powerful features without
knowledge of internals or an in depth knowledge of those features.

® Those with a utilitarian appreciation rather than a great depth of understanding.

e |f you are happy with Perl objects, name management, data structures, and the debugger, that's
probably sufficient.

Things you should do wherdevebping a Perl Plugin (€PN omot)

® Always always generate some output

® Use 'use utils’ and import the stuff it exports ($TIMEOUT %ERRORS &print_revision
&support)

e Have a look at how the standard Perl plugins do their stuff e.g.

O

O O OO

Always exit with SERRORS{CRITICAL}, SERRORS{OK}, etc.

Use getopt to read command line arguments

Manage timeouts

Call print_usage (supplied by you) when there are no command line arguments
Use standard switch names (eg H ’host’, V 'version’)

Things you must do to develop a Perl plugin foePN

1. <DATA> can not be used; use here documents instead e.g.

my $data = <<DATA;
portmapper 100000
portmap 100000
sunrpc 100000
rpchind 100000
rstatd 100001

rstat 100001

rup 100001

DATA

%prognum = map { my($a, $b) = split; ($a, $b) } split(\n/, $data) ;

2. BEGIN blocks will not work as you expect. May be best to avoid.
3. Ensure that it is squeaky clean at compile time i.e.

use strict
use perl -w (other switches [T notably] may not help)
use perl -c

4. Avoid lexical variables (my) with global scope as a means of passing __variable__ data into
subroutines. In fact this is __fatal__ if the subroutine is called by the plugin more than once when
the check is run. Such subroutines act as 'closures’ that lock the global lexicals first value into
subsequent calls of the subroutine. If however, your global is read-only (a complicated structure
for example) this is not a problem. What Bekipan recommends you do jnstead, is any of the
following:

make the subroutine anonymous and call it via a code ref e.g.

158

http://perl.apache.org/guide/

turn this into

my $x=1; my $x=1;
suba{.. Process $x ...} $a_cr=sub{... Process $x ... };

a; &$a_cr;
$x =2 $x=2;
a; &$a_cr;

anon closures __always__ rebind the current lexical value

put the global lexical and the subroutine using it in their own package (as an object or a
module)

pass info to subs as references or aliases (\$lex_var or $_[n])

replace lexicals with package globals and exclude them from 'use strict’ objections with 'use
vars gw(globall global2 ..y’

5. Be aware of where you can get more information.

Useful information can be had from the usual suspects (the O'Reilly books, plus Damien
Conways "Object Oriented Perl") but for the really useful stuff in the right context start at
Stas Bekman’s mod_perl guidg at http://perl.apache.org/guide/.

This wonderful book sized document has nothing whatsoever about Nagios, but all about
writing Perl programs for the embedded Perl interpreter in Apache (ie Doug MacEacherns
mod_perl).

The perlembed manpage is essential for context and encouragement.

On the basis that Lincoln Stein and Doug MacEachern know a thing or two about Perl and
embedding Perl, their book '"Writing Apache Modules with Perl and C’ is almost certainly
worth looking at.

6. Be aware that your plugin may return strange values with an ePN and that this is likely to be
caused by the problem in item #4 above
7. Be prepared to debug via:

having a test ePN and

adding print statements to your plugin to display variable values to STDERR (can't use
STDOUT)

adding print statements to p1.pl to display what ePN thinks your plugin is before it tries to
run it (vi)

running the ePN in foreground mode (probably in conjunction with the former recommenda-
tions)

use the 'Deparse’ module on your plugin to see how the parser has optimised it and what the
interpreter will actually get. (see 'Constants in Perl’ by Sean M. Burke, The Perl Journal,
Fall 2001)

perl -MO::Deparse <your_program>

8. Be aware of what ePN is transforming your plugin too, and if all else fails try and debug the
transformed version.

As you can see below pl.pl rewrites your plugin as a subroutine called 'hndlIr’ in the
package named 'Embed::<something_related_to_your_plugin_file_name>’.

159

http://perl.apache.org/guide/

Your plugin may be expecting command line arguments in @ARGYV so pl.pl also assigns
@ to @ARGV.

This in turn gets 'eval’ ed and if the eval raises an error (any parse error and run error), the
plugin gets chucked out.

The following output shows how a test ePN transformedhieek_rpglugin before

attempting to execute it. Most of the code from the actual plugin is not shown, as we are
interested in only the transformations that the ePN has made to the plugin). For clarity, trans-
formations are shown in red:

package main;
use subs 'CORE::GLOBAL::exit’;
sub CORE::GLOBAL::exit { die "ExitTrap: $_[0]
(Embed::check_5frpc)"; }
package Embed::check_5frpc; sub hndlr { shift(@_);
@ARGV=@_;
#! lusr/bin/perl -w
#
check_rpc plugin for Nagios
#
usage:
check_rpc host service
#
Check if an rpc serice is registered and running
using rpcinfo - $proto $host $prognum 2>&1 |";
#
Use these hosts.cfg entries as examples
#
command[check_nfs]=/some/path/libexec/check_rpc $HOSTADDRESS$ nfs
service[check_nfs]=NFS;24x7;3;5;5;unix-admin;60;24x7;1;1;1;;check_rpc
#
initial version: 3 May 2000 by Truongchinh Nguyen and Karl DeBisschop
current status: $Revision: 1.1.1.1 $
#
Copyright Notice: GPL
#
... rest of plugin code goes here (it was removed for brevity) ...

}

9. Don't use 'use diagnostics’ in a plugin run by your production ePN. | think it causes__all__ the
Perl plugins to return CRITICAL.

10. Consider using a mini embedded Perl C program to check your plugin. This is not sufficient to
guarantee your plugin will perform Ok with an ePN but if the plugin fails this test it will ceratinly
fail with your ePN[A sample mini ePN is included in tleentrib/ directory of the Nagios distri-
bution for use in testing Perl plugins. Change to the contrib/ directory and type 'make mini_epn’
to compile it. It must be executed from the same directory that the pl.pl file resides in (this file is
distributed with Nagios). |

Compiling Nagios With TheEmbedded Perl Inter preter

Okay, you can breathe again now. So do stduwant to compile Nagios with the embedded Perl
interpreter? ;-)

160

If you want to compile Nagios with the embedded Perl interpreter you need to rerun the configure
script with the addition of theenable-embedded-pesption. If you want the embedded interpreter to
cache internally compiled scripts, add theith-perlcacheoption as well. Example:

Jconfigure --enable-embedded-perl --with-perlcache ...other options...

Once you've rerun the configure script with the new options, make sure to recompile Nagios. You can
check to make sure that Nagios has been compile with the embedded Perl interpreter by executing it
with the-m command-line argument. Output from executing the command will look something like

this (notice that the embedded perl interpreter is listed in the options section):

[nagios@firestore J# ./nagios -m

Nagios 1.0a0

Copyright (c) 1999-2001 Ethan Galstad (nagios@nagios.org)
Last Modified: 07-03-2001

License: GPL

External Data I/O

Object Data: DEFAULT
Status Data: DEFAULT
Retention Data: DEFAULT
Comment Data: DEFAULT
Downtime Data: DEFAULT
Performance Data: DEFAULT

Options

* Embedded Perl compiler (With caching)

161

Adaptive Monitoring

Intro duction

Nagios allows you to change certain commands and host and service check attributes during runtime.
I'll refer to this feature as "adaptive monitoring". Please note that the adaptive monitoring features
found in Nagios will probably not be of much use to 99% of users, but they do allow you to do some
neat things.

What Can BeChanged?

The following service check attributes can be changed during runtime:

Check command (and command arguments)

Event handler command (and command arguments)
Check interval

Max check attempts

The following host check attributes can be changed during runtime:

Check command (and command arguments)

Event handler command (and command arguments)
Check interval

Max check attempts

The following global attributes can be changed during runtime:

® Global host event handler command (and command arguments)
® Global service event handler command (and command arguments)

External Commands ForAdaptive Monitoring

In order to change global or host- or service-specific attributes during runtime, you must submit the
appropriat¢ external commagnd to Nagios vig the external commgnd file. The table below lists the
different attributes that may be changed during runtime, along with the external command to accom-
plish the job.

NOTE: When changing check commands or event handler commands, it is important to note that
these commands must have been configured using command definitions before Nagios was started.
Any request to change an check or event event handler command to use a command which has not
been defined is ignore. Also of note, you specify command arguments along with the actual command
name - just seperate individual arguments from the command name (and from each other) using bang
(1) characters. More information on how arguments in command definitions are processed during
runtime can be found in the documentatio on macros.

Attribute External Command Notes

162

Service check command

CHANGE_SVC_CHECK_COMMANDcommand_name

Changes the
service’'s
current check
command to
whatever you
specify in the
command_nam
argument.

Service event handler

CHANGE_SVC_EVENT_HANDLERcommand_name

Changes the
service’'s
current event
handler
command to
whatever you
specify in the
command_nam
argument.

Service check interval

CHANGE_NORMAL_SVC_CHECK_INTERVALinterval

Changes the
service’'s
normal check
interval to be
whatever you
specify in the
interval argu-
ment.

Service check retry interval

CHANGE_RETRY_SVC_CHECK_INTERVAlinterval

Changes the
services’ retry
check interval
to be whatever
you specify in
theinterval
argument.

Max service check attempt

CHANGE_MAX_SVC_CHECK_ATTEMPTSattempts

Changes the
maximum
number of
check attempts
for the service
to whatever you
specify in the
attemptsargu-
ment.

Host check command

CHANGE_HOST_CHECK_COMMANDzommand_name

Changes the
host’s current
check commang
to whatever you
specify in the
command_nam

i

argument.

163

Host event handler

CHANGE_HOST_EVENT_HANDLERcommand_name

Changes the
host’s current
event handler
command to
whatever you
specify in the
command_nam
argument.

Host check interval

CHANGE_NORMAL_HOST_CHECK_INTERVALinterval

Changes the
host’s check

interval to be
whatever you
specify in the
interval argu-
ment.

Max host check attempts

CHANGE_MAX_HOST_CHECK_ATTEMPTSittempts

Changes the
maximum
number of
check attempts
for the host to
whatever you
specify in the
attemptsargu-
ment.

Global host event handler

CHANGE_GLOBAL_HOST EVENT_HANDLER;ommand_nam

Changes the
curren{ globdl
host evert
handlet]

to

whatever you
specify in the
command_nam
argument.

Global service event handl

CHANGE_GLOBAL_SVC_EVENT_HANDLER;ommand_name

Changes the
curren{ global
[service event
to

whatever you
specify in the
command_nam
argument.

164

Object Inheritance

Intro duction

This documentation attempts to explain object inheritance and how it can be[used in template-based
[object definitions.

One of my primary motivations for adding support for template-based object data was its ability to
easily allow object definitions to inherit various properties from other object definitions. Object prop-
erty inheritance is accomplished through recursion when Nagios processes your configuration files.

If you are still confused about how recursion and inheritance work after reading this, take a look at the
sample object config files provided in the distribution. If that still doesn’t help, drop an email message
with adetaileddescription of your problem to tmagios-usersnailing list.

Basics

There are three variables affecting recursion and inheritance that are present in all object definitions.
They are indicated in red as follows...

define someobjecttype {
object-specific variables
name template_nam
use name_of template_to_use

register [0/1]
}

The first variable imame Its just a "template" name that can be referenced in other object definitions
so they can inherit the objects properties/variables. Template names must be unique amongst objects
of the same type, so you can’t have two or more host definitions that have "hosttemplate” as their
template name.

The second variable isse This is where you specify the name of the template object that you want to
inherit properties/variables from. The name you specify for this variable must be defined as another
object’s template named (using th@mevariable).

The third variable isegister. This variable is used to indicate whether or not the object definition
should be "registered" with Nagios. By default, all object definitions are registered. If you are using a
partial object definition as a template, you would want to prevent it from being registered (an example
of this is provided later). Values are as follows: 0 = do NOT register object definition, 1 = register
object definition (this is the default). This variable is NOT inherited; every (partial) object definition
used as a template must explicitly setrégisterdirective to beéd. This prevents the need to override

an inheritedegisterdirective with a value of for every object that should be registered.

Local Variablesvs.Inherited Vari ables

One important thing to understand with inheritance is that "local” object variables always take prece-
dence over variables defined in the template object. Take a look at the following example of two host
definitions (not all required variables have been supplied):

165

define host{
host_name bighostl
check_command check-host-alive
notification_options d,u,r
max_check_attempts 5

name hosttemplatel
}
define host{
host_name bighost2
max_check_attempts 3
use hosttemplatel
}

You'll note that the definition for hogtighostlhas been defined as havingsttemplatehs its
template name. The definition for hdsgjhost2is using the definition dbighostlas its template
object. Once Nagios processes this data, the resulting definition dfiglosst2would be equivalent
to this definition:

define host{
host_name bighost2
check_command check-host-alive
notification_options d,u,r
max_check_attempts 3

}

You can see that tteheck_commandndnoatification_optionsrariables were inherited from the

template object (where hdsighostlwas defined). However, thest_nameandmax_check attempts
variables were not inherited from the template object because they were defined locally. Remember,
locally defined variables override variables that would normally be inherited from a template object.
That should be a fairly easy concept to understand.

inheritance Chaining

Objects can inherit properties/variables from multiple levels of template objects. Take the following
example:

define host{
host_name bighostl
check_command check-host-alive
notification_options d,u,r
max_check_attempts 5

name hosttemplatel
}
define host{
host_name bighost2
max_check_attempts 3
use hosttemplatel
name hosttemplate2
}
define host{
host_name bighost3
use hosttemplate2
}

166

You'll notice that the definition of hostighost3inherits variables from the definition of hdsghost2
which in turn inherits variables from the definition of hbigthostl Once Nagios processes this
configuration data, the resulting host definitions are equivalent to the following:

define host{
host_name
check_command check-host-alive
notification_options d,u,r
max_check_attempts 5

bighost1

}

define host{
host_name bighost2
check_command check-host-alive

notification_options d,u,r
max_check_attempts 3

}

define host{
host_name bighost3
check_command check-host-alive

notification_options d,u,r
max_check_attempts 3

}

There is no inherent limit on how "deep" inheritance can go, but you'll probably want to limit yourself
to at most a few levels in order to maintain sanity.

Using Incomplete Object Definitions asTemplates

It is possible to use imcomplete object definitions as templates for use by other object definitions. By
"incomplete"” definition, | mean that all required variables in the object have not been supplied in the
object definition. It may sound odd to use incomplete definitions as templates, but it is in fact recom-
mended that you use them. Why? Well, they can serve as a set of defaults for use in all other object
definitions. Take the following example:

define host{
check_command check-host-alive
notification_options d,u,r
max_check_attempts 5

name generichosttemplate
register 0
}
define host{
host_name bighostl
address 192.168.1.3
use generichosthosttemplate
}
define host{
host_name bighost2
address 192.168.1.4
use generichosthosttemplate
}

167

Notice that the first host definition is incomplete because it is missing the refosedamevari-

able. We don’t need to supply a host name because we just want to use this definition as a generic host
template. In order to prevent this definition from being registered with Nagios as a normal host, we set
theregistervariable to 0.

The definitions of hostbighostlandbighost2inherit their values from the generic host definition.

The only variable we’ve chosed to override isaddressvariable. This means that both hosts will

have the exact same properties, except for tizat_namendaddressvariables. Once Nagios

processes the config data in the example, the resulting host definitions would be equivalent to specify-
ing the following:

define host{

host_name bighost1
address 192.168.1.3
check_command check-host-alive

notification_options d,u,r
max_check_attempts 5

}

define host{

host_name bighost2
address 192.168.1.4
check_command check-host-alive

notification_options d,u,r
max_check_attempts 5

}

At the very least, using a template definition for default variables will save you a lot of typing. It'll
also save you a lot of headaches later if you want to change the default values of variables for a large
number of hosts.

168

Time-Saving Tricks For Object Definitions

or...
"How To Preserve Your Sanity"

Intro duction

This documentation attempts to explain how you can exploit the (somewhat) hidden features of
[template-based object definitigns to save your sanity. How so, you ask? Several types of objects allow
you to specify multiple host names and/or hostgroup names in definitions, allowing you to "copy" the
object defintion to multiple hosts or services. I'll cover each type of object that supports these features
seperately. For starters, the object types which support this time-saving feature are as follows:

Servicep

[Service escalatiohs
|Service dependencles
|[Host escalations

|[Host dependencies

Hostgroupss

Object types that are not listed above (i.e. timeperiods, commands, etc.) do not support the features
I’'m about to describe.

Reqular Expression Matching

The examples | give below use "standard" matching of object names. If you wish, you can enable
regular expression matching for object names by usirjg the use regexp _matching config option. By
default, regular expression matching will only be used in object names that contaantfewild-

card characters. If you want regular expression matching to be used on all object names (regardless of
whether or not they contain the * and ? wildcard characters), enable the use_true regexp | matching
config option.

Regular expressions can be used in any of the fields used in the examples below (host names, host-
group names, service names, and servicegroup names).

NOTE: Be careful when enabling regular expression matching - you may have to change your config
file, since some directives that you might not want to be interpreted as a regular expression just might
be! Any problems should become evident once you verify your configuration.

ServiceDefinitions

Multiple Hosts: If you want to create identidal servites that are assigned to multiple hosts, you can
specify multiple hosts in theost_namalirective as follows:

define service {
host_name HOST1,HOST2,HOST3,...,HOSTN

service_description SOMESERVICE
other service directives

169

The definition above would create a service csB@MESERVICEN host4HOST1throughHOSTN
All the instances of thEOMESERVICEervice would be identical (i.e. have the same check
command, max check attempts, notification period, etc.).

All Hosts In Multiple Hostgroups: If you want to create identical services that are assigned to all
hosts in one or more hostgroups, you can do so by creating a single service definition. Hbe&-The
group_namalirective allows you to specify the name of one or more hostgroups that the service
should be created for:

define service {
hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN

service_description SOMESERVICE
other service directives

}

The definition above would create a service cAB&MESERVICBn all hosts that are members of
hostgroupsHOSTGROUP1hroughHOSTGROUPNAII the instances of thEOMESERVICEervice
would be identical (i.e. have the same check command, max check attempts, notification period, etc.).

All Hosts: If you want to create identical services that are assigned to all hosts that are defined in your
configuration files, you can use a wildcard in bwst_namalirective as follows:

define service {
host_name *
service_description SOMESERVICE

other service directives

}

The definition above would create a service cdB@MESERVICBnall hoststhat are defined in
your configuration files. All the instances of tSBOMESERVICEervice would be identical (i.e. have
the same check command, max check attempts, notification period, etc.).

ServiceEscdation Definitions

Multiple Hosts: If you want to create service escalatfons for services of the same name/description
that are assigned to multiple hosts, you can specify multiple hostshogshenamelirective as
follows:

define serviceescalation {
host_name HOST1,HOST2,HOSTS,...,HOSTN
service_description SOMESERVICE

other escalation directives

}

The definition above would create a service escalation for services $8IM&ESERVICBN hosts
HOST1throughHOSTN All the instances of the service escalation would be identical (i.e. have the
same contact groups, natification interval, etc.).

All Hosts In Multiple Hostgroups: If you want to create service escalations for services of the same
name/description that are assigned to all hosts in in one or more hostgroups, you can dwogse the
group_namalirective as follows:

170

define serviceescalation {
hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
service_description SOMESERVICE
other escalation directives

}

The definition above would create a service escalation for services $alM&SERVICBnN all hosts
that are members of hostgroup® STGROUP throughHOSTGROUPNAII the instances of the
service escalation would be identical (i.e. have the same contact groups, notification interval, etc.).

All Hosts: If you want to create identical service escalations for services of the same name/description
that are assigned to all hosts that are defined in your configuration files, you can use a wildcard in the
host_namalirective as follows:

define serviceescalation {
host_name *
service_description SOMESERVICE

other escalation directives

}

The definition above would create a service escalation for all services S&IMESERVICBnNall
hoststhat are defined in your configuration files. All the instances of the service escalation would be
identical (i.e. have the same contact groups, notification interval, etc.).

All Services On Same HostlIf you want to create service escalat|ons for all services assigned to a
particular host, you can use a wildcard in$bevice_descriptiodirective as follows:

define serviceescalation {
host_name HOST1
service_description *

other escalation directives

}

The definition above would create a service escalatioalf@ervices on ho$iOST1 All the
instances of the service escalation would be identical (i.e. have the same contact groups, notification
interval, etc.).

If you feel like being particularly adventurous, you can specify a wildcard in bottogtienamend
service_descriptionlirectives. Doing so would create a service escalatioallfservicesthat you've
defined in your configuration files.

Multiple Services On Same Hostif you want to create service escalatlons for all multiple services
assigned to a particular host, you can use a specify more than one service description in the
service_descriptiodirective as follows:

define serviceescalation {
host_name HOST1

service_description SERVICE1,SERVICEZ2,...,SERVICEN
other escalation directives

}

The definition above would create a service escalation for seStRYICEhroughSERVICENdN
hostHOST1 All the instances of the service escalation would be identical (i.e. have the same contact
groups, notification interval, etc.).

171

All Services In Multiple Servicegroups:If you want to create service escalations for all services that
belong in one or more servicegroups, you can do ussetirecegroup_nameirective as follows:

define serviceescalation {
servicegroup_name SERVICEGROUP1,SERVICEGROUPZ2,...,.SERVICEGROUPN
other escalation directives .

}

The definition above would create service escalations for all services that are members of service-
groupsSERVICEGROUP1hroughSERVICEGROUPNMAII the instances of the service escalation
would be identical (i.e. have the same contact groups, notification interval, etc.).

ServiceDeperdency Definitions

Multiple Hosts: If you want to create service dependerjcies for services of the same name/description
that are assigned to multiple hosts, you can specify multiple hostshinghenamend ordepen-
dent_host_namedirectives as follows:

define servicedependency {
host_name HOST1,HOST2
service_description SERVICEL1
dependent_host_name HOST3,HOST4

dependent_service_description SERVICE2
other dependency directives .

}

In the example above, serviSERVICE2DN hostHOST3andHOST4would be dependent on service
SERVICEIon hostHOST1andHOST?2 All the instances of the service dependencies would be iden-
tical except for the host names (i.e. have the same notification failure criteria, etc.).

All Hosts In Multiple Hostgroups: If you want to create service dependencies for services of the
same name/description that are assigned to all hosts in in one or more hostgroups, you can do use the
hostgroup_namand/ordependent_hostgroup_namigectives as follows:

define servicedependency {
hostgroup_name HOSTGROUP1,HOSTGROUP2
service_description SERVICE1
dependent_hostgroup_name HOSTGROUP3,HOSTGROUP4

dependent_service_description SERVICE2
other dependency directives "

}

In the example above, servisERVICE2n all hosts in hostgroupOSTGROUP&NdHOST-
GROUP4would be dependent on servisERVICEIon all hosts in hostgroup$OSTGROUP&Nd
HOSTGROUP2Assuming there were five hosts in each of the hostgroups, this definition would be
equivalent to creating 100 single service dependency definitions! All the instances of the service
dependency would be identical except for the host names (i.e. have the same noatification failure crite-
ria, etc.).

All Services On Same Hostlf you want to create service dependencies for all services assigned to a
particular host, you can use a wildcard in$bevice_descriptioand/ordependent_service descrip-
tion directives as follows:

172

define servicedependency {

host_name HOST1

service_description *

dependent_host_name HOST2
*

dependent_service_description
other dependency directives

}

In the example abovell serviceson hostHOST2would be dependent @il serviceson hostHOST1
All the instances of the service dependencies would be identical (i.e. have the same notification failure
criteria, etc.).

Multiple Services On Same Hostif you want to create service dependencies for multiple services
assigned to a particular host, you can specify more than one service descriptisemitiee descrip-
tion and/ordependent_service_descriptidmectives as follows:

define servicedependency {
host_name HOSTL1
service_description SERVICE1,SERVICEZ2,...,.SERVICEN
dependent_host_name HOST2
dependent_service_description SERVICE1,SERVICEZ2,...,.SERVICEN

other dependency directives

}

All Services In Multiple Servicegroups:If you want to create service dependencies for all services
that belong in one or more servicegroups, you can do usetvieegroup_namand/ordepen-
dent_servicegroup_nantirective as follows:

define servicedependency {
servicegroup_name SERVICEGROUP1,SERVICEGROUP2,...,SERVICEGROUPN

dependent_servicegroup_name SERVICEGROUPS3,SERVICEGROUP4,...SERVICEGROUPN
other escalation directives

}

Host Escdation Definitions

Multiple Hosts: If you want to create host escalations for multiple hosts, you can specify multiple
hosts in thédhost_namaelirective as follows:

define hostescalation {
host_name HOST1,HOST2,HOSTS3,...,HOSTN
other escalation directives

}

The definition above would create a host escalation for HG&&T 1throughHOSTN All the
instances of the host escalation would be identical (i.e. have the same contact groups, notification
interval, etc.).

All Hosts In Multiple Hostgroups: If you want to create host escalations for all hosts in in one or
more hostgroups, you can do uselibstgroup_namdirective as follows:

define hostescalation {

hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
other escalation directives

173

The definition above would create a host escalation on all hosts that are members of hostgroups
HOSTGROUP1hroughHOSTGROUPNAII the instances of the host escalation would be identical
(i.e. have the same contact groups, notification interval, etc.).

All Hosts: If you want to create identical host escalations for all hosts that are defined in your configu-
ration files, you can use a wildcard in thest_namalirective as follows:

define hostescalation {
host_name *
other escalation directives

}

The definition above would create a hosts escalatioalfftioststhat are defined in your configura-
tion files. All the instances of the host escalation would be identical (i.e. have the same contact groups,
notification interval, etc.).

Host Deperdency Definitions

Multiple Hosts: If you want to create host dependencies for multiple hosts, you can specify multiple
hosts in thénost_namend/ordependent_host_nand@ectives as follows:

define hostdependency {
host_name HOST1,HOST2

dependent_host_name HOST3,HOST4,HOST5
other dependency directives .

}

The definition above would be equivalent to creating six seperate host dependencies. In the example
above, hostslOST3 HOST4andHOST5would be dependent upon bd®OST1andHOST2 All the
instances of the host dependencies would be identical except for the host names (i.e. have the same
notification failure criteria, etc.).

All Hosts In Multiple Hostgroups: If you want to create host escalations for all hosts in in one or
more hostgroups, you can do usehbstgroup_namand /ordependent_hostgroup nardieectives
as follows:

define hostdependency {
hostgroup_name HOSTGROUP1,HOSTGROUP2

dependent_hostgroup_name HOSTGROUP3,HOSTGROUP4
other dependency directives .

}

In the example above, all hosts in hostgrad@STGROUPaNdHOSTGROUP4vould be depen-

dent on all hosts in hostgroud©STGROUPBAndHOSTGROUP2AII the instances of the host
dependencies would be identical except for host names (i.e. have the same notification failure criteria,
etc.).

Hostgroups

All Hosts: If you want to create a hostgroup that has all hosts that are defined in your configuration
files as members, you can use a wildcard imtkenberslirective as follows:

174

define hostgroup {
hostgroup_name HOSTGROUP1
members *
other hostgroup directives

}

The definition above would create a hostgroup cal&STGROUP1hat has alall hoststhat are
defined in your configuration files as members.

175

UCD-SNMP (NET-SNMP) Integration

Note: Nagios is not designed to be a replacement for a full-blown SNMP management application like
HP OpenView of OpenNMS. However, you can set things up so that SNMP traps received by a host
on your network can generate alerts in Nagios. Here’s how...

Intro duction

This example explains how to easily generate alerts in Nagios for SNMP traps that are received by the
snmptrapddaemon. These directions assume that the host which is receiving SNMP

traps is not the same host on which Nagios is running. If your monitoring box is the same box that is
receiving SNMP traps you will need to make a few modifications to the examples | provide. Also, |

am assuming that you having installed[the nsca ddemon on your monitoring server and the nsca client
(send_nscpon the machine that is receiving SNMP traps.

For the purposes of this example, | will be describing how | setup Nagios to generate alerts from
SNMP traps received by the ArcServe backup jobs running on my Novell servers. | wanted to get noti-
fied when backups failed, so this worked very nicely for me. You'll have to tweak the examples in
order to make it suit your needs.

Additional Software

Translating SNMP traps into Nagios events can be a bit tedious. If you'd like to make it easier, you
might want to check out Alex Burger's SNMP Trap Translator project located at
[http://www.snmptt.org which, combined with Net-SNMP, provides a more enhanced trap handling
system. The snmptt documentation includes integration details for Nagios.

Defining The Service

First off you're going to have to define a service in your object configuratign file for the SNMP traps
(in this example, | am defining a service for ArcServe backup jobs). Assuming that the host that the
alerts are originating from is callevellserver, a sample service definition might look something

like this:

define service{

host_name novellserver
service_description ArcServe Backup
is_volatile 1
active_checks_enabled 0
passive_checks_enabled 1
max_check_attempts 1
contact_groups novell-backup-admins
notification_interval 120
notification_period 24X7
notification_options w,u,c,r
check_command check_none

}

Important things to note are the fact that this service hagthtle option enabled. We want this

option enabled because we want a notification to be generated for every alert that comes in. Also of
note is the fact that active checks are disabled for the service, while passive checks are enabled. This
means that the service will never be actively checked - all alert information will have to be sent in
passively by thasca clienton the SNMP management host (in my example, it will be called

176

http://www.opennms.org/
http://net-snmp.sourceforge.net/
http://www.snmptt.org/

firestorm).

ArcServe and Novell SNMPConfiguration

In order to get ArcServe (and my Novell server) to send SNMP traps to my management host, | had to
do the following:

1. Modify the ArcServe autopilot job to send SNMP traps on job failures, successes, etc.

2. Edit SYS\ETC\TRAPTARG.CFG and add the IP address of my management host (the one
receiving the SNMP traps)

3. Load SNMP.NLM

4. Load ALERT.NLM to facilitate the actual sending of the SNMP traps

SNMP Management Host Configuration

On my Linux SNMP management hoBtdstorm), | installed th¢ UCD-SNMP (NET-SNMP) soft-
ware. Once the software was installed | had to do the following:

1. Install the ArcServe MIBs (included on the ArcServe installation CD)

2. Edit the snmptrapd configuration f{letc/snmp/snmptrapd.cortf) define a trap handler for
ArcServe alerts. This is detailed below.

3. Start thesnmptrapddaemon to listen for incoming SNMP traps

In order to have thenmptrapddaemon route ArcServe SNMP traps to our Nagios host, we've got to
define a traphandler in thietc/snmp/snmptrapd.cofife. In my setup, the config file looked some-
thing like this:

ArcServe SNMP Traps
HHHHHEHHHHHEHEH TR

Tape format failures
traphandle ARCserve-Alarm-MIB::arcServetrap9 /usr/local/nagios/libexec/eventhandlers/handle-arcserve-trap 9

Failure to read tape header
traphandle ARCserve-Alarm-MIB::arcServetrap10 /usr/local/nagios/libexec/eventhandlers/handle-arcserve-trap 10

Failure to position tape
traphandle ARCserve-Alarm-MIB::arcServetrap11 /usr/local/nagios/libexec/eventhandlers/handle-arcserve-trap 11

Cancelled jobs
traphandle ARCserve-Alarm-MIB::arcServetrap12 /usr/local/nagios/libexec/eventhandlers/handle-arcserve-trap 12

Successful jobs
traphandle ARCserve-Alarm-MIB::arcServetrap13 /usr/local/nagios/libexec/eventhandlers/handle-arcserve-trap 13

Imcomplete jobs
traphandle ARCserve-Alarm-MIB::arcServetrap14 /usr/local/nagios/libexec/eventhandlers/handle-arcserve-trap 14

Job failures
traphandle ARCserve-Alarm-MIB::arcServetrap15 /usr/local/nagios/libexec/eventhandlers/handle-arcserve-trap 15

This example assumes that you havesa/local/nagios/libexec/eventhandledifectory on your

SNMP mangement host and that taandle-arcserve-tragcript exists there. You can modify these to
fit your setup. Anyway, thbandle-arcserve-tragcript on my management host looked something
like this:

#!/bin/sh

Arguments:
$1 = trap type

First line passed from snmptrapd is FQDN of host that sent the trap

177

http://net-snmp.sourceforge.net/

read host

Given a FQDN, get the short name of the host as it is setup in Nagios
hostname="unknown"
case $host in
novellserver.mylocaldomain.com)
hostname="novellserver"

nt.mylocaldomain.com)
hostname="ntserver"

esac

Get severity level (OK, WARNING, UNKNOWN, or CRITICAL) and plugin output based on trape type
state=-1

output="No output”

case "$1"in

failed to format tape - critical

11)
output="Critical: Failed to format tape"
state=2

"

failed to read tape header - critical

10)
output="Critical: Failed to read tape header"
state=2

failed to position tape - critical

11)
output="Critical: Failed to position tape"
state=2

”

backup cancelled - warning

12)
output="Warning: ArcServe backup operation cancelled"
state=1

backup success - ok

13)
output="Ok: ArcServe backup operation successful"
state=0

backup incomplete - warning

14)
output="Warning: ArcServe backup operation incomplete"
state=1

backup failure - critical

15)
output="Critical: ArcServe backup operation failed"
state=2

esac
Submit passive check result to monitoring host
{usr/local/nagios/libexec/eventhandlers/submit_check_result $hostname "ArcServe Backup" $state "$output”

exit 0

Notice that thénandle-arcserve-tragcript calls thesubmit_check_resudicript to actually send the

alert back to the monitoring host. Assuming your monitoring host is qaltegtor, thesubmit
check_resulscript might look like this (you'll have to modify this to specify the proper location of the
send_nscg@rogram on your management host):

178

#!/bin/sh

Arguments

$1 = name of host in service definition

$2 = name/description of service in service definition
$3 = return code

$4 = output

/bin/echo -e "$1\t$2\t$3\t$4\n" | /usr/local/nagios/bin/send_nsca monitor -c /usr/local/nagios/etc/send_nsca.cfg
Finishing Up

You've now configured everything you need to, so all you have to do is restart the Nagios on your
monitoring server. That’s it! You should be getting alerts in Nagios whenever ArcServe jobs fall,
succeed, etc.

179

TCP Wrapper Integration

Intro duction

This example explains how to easily generate alerts in Nagios for connection attempts that are rejected
by TCP wrappers. These directions assume that the host which you are generating alerts for (i.e. the
host you are using TCP wrappers on) is not the same host on which Nagios is running. If you want to
generate alerts on the same host that Nagios is running you will need to make a few modifications to
the examples | provide. Also, | am assuming that you having installgd the nscaldaemon on your moni-
toring server and the nsca cliesefid_nscpon the machine that you are generating TCP wrapper

alerts from.

Defining The Service

First off you're going to have to define a service in your object configuration file for the TCP wrapper
alerts. Assuming that the host that the alerts are originating from is figdltdrm, a sample service
definition might look something like this:

define service{

host_name firestorm
service_description TCP Wrappers
is_volatile 1
active_checks_enabled 0
passive_checks_enabled 1
max_check_attempts 1
contact_groups security-admins
notification_interval 120
notification_period 24x7
notification_options W,u,c,r
check_command check _none

}

Important things to note are the fact that this service hasthsle option enabled. We want this

option enabled because we want a notification to be generated for every alert that comes in. Also of
note is the fact that active checks of the service as disabled, while passive checks are enabled. This
means that the service will never be actively checked - all alert information will have to be sent in
passively by thasca clienton thefirestorm host.

Configuring TCP Wrap pers

Now you're going to have to modify thetc/hosts.denfile on the host callefirestorm. In order to
have the TCP wrappers send an alert to the monitoring host whenever a connection attempt is denied,
you'll have to add a line similiar to the following:

ALL: ALL: RFC931.: twist (/usr/local/nagios/libexec/eventhandlers/handle_tcp_wrapper %h %d) &

This line assumes that there is a script cadii@adle_tcp_wrappein the
{usr/local/nagios/libexec/eventhandledifectory orfirestorm. The directory and script name can be
changed to whatever you want.

Writing The Script

180

The last thing you need to do is write thendle_tcp_wrappescript onfirestorm that will send the
alert back to the monitoring host. It might look something like this:

#l/bin/sh

Jusr/local/nagios/libexec/eventhandlers/submit_check_result firestorm "TCP Wrappers" 2 "Denied $2-$1" > /dev/null 2> /dev/null

Notice that thdhnandle _tcp wrappescript calls thesubmit_check_resudicript to actually send the

alert back to the monitoring host. Assuming your monitoring host is aalbeitor, thesubmit
check_resulscript might look like this (you'll have to modify this to specify the proper location of the
send_nsca@rogram orfirestorm):

#1/bin/sh

Arguments

$1 = name of host in service definition

$2 = name/description of service in service definition
$3 = return code

$4 = output

/binfecho -e "$1\t$2\t$3\t$4\n" | /usr/local/nagios/bin/send_nsca monitor -c /usr/local/nagios/etc/send_nsca.cfg
Finishing Up

You've now configured everything you need to, so all you have to do is restaréttiprocess on

firestorm and restart Nagios on your monitoring server. That's it! When the TCP wrappers on
firestorm deny a connection attempt, you should be getting alerts in Nagios. The plugin output for the
alert will look something like the following:

Denied sshd2-sdn-ar-002mnminnP321.dialsprint.net

181

Securing Nagios

Intro duction

This is intended to be a brief overview of some things you should keep in mind when installing
Nagios, so as to not set it up in an insecure manner. This document is new, so if anyone has additional
notes or comments on securing Nagios, please drop me a note at nagios@nagios.org

Do Not Run Nagios AsRoot!

Nagios doesn’t need to run as root, so don’t do it. Even if you start Nagios at boot time with an init
script, you can force it to drop privileges after startup and run as another user/group by using the
[nagios _usér and nagios _grpup directives in the main config file.

If you need to execute event handlers or plugins which require root access, you might want to try using

[sudo.

Enable External Commands Only If Necesary

By default] external commards are disabled. This is done to prevent an admin from setting up Nagios
and unknowingly leaving its command interface open for use by "others".. If you are planning on
using event handldrs or issuing commands from the web interface, you will have to enable external
commands. If you aren’t planning on using event handlers or the web interface to issue commands, |
would recommend leaving external commands disabled.

Set ProperPermissionsOn The External CommandFile

If you enabl¢ external commands, make sure you set proper permissions on the
{usr/local/nagios/var/rndirectory. You only want the Nagios user (usuakgiog and the web server
user (usuallyhobody to have permissions to write to the command file. If you've installed Nagios on
a machine that is dedicated to monitoring and admin tasks and is not used for public accounts, that
should be fine.

If you've installed it on a public or multi-user machine, allowing the web server user to have write
access to the command file can be a security problem. After all, you don’t want just any user on your
system controlling Nagios through the external command file. In this case, | would suggest only grant-
ing write access on the command file to tlagiosuser and using something Ifke CGIWrap to run the
CGls as thaeagiosuser instead afobody

Instructions on setting up permissions for the external command file can bé foynd here.

Require Authentication In The CGls

| would strongly suggest requiring authentication for accessing the CGls. Once you do that, read the
documentation on the default rights that authenticated contacts have, and only authorize specific
contacts for additional rights as necessary. Instructions on setting up authentication and configuring
authorization rights can be foupd Here. If you disable the CGI authentication features using the
[use_authenticatidn directive in the CGI config file,[the command CGI will refuse to write any
commands to the external command file. After all, you don’t want the world to be able to control
Nagios do you?

182

http://www.courtesan.com/sudo/sudo.html
http://cgiwrap.unixtools.org/

Use Full Paths In CommandDefinitions

When you define commands, make sure you speciffuthpathto any scripts or binaries you're
executing.

Hide Senstive Infor mation With $USERN$ Macros

The CGils read the main config file gnd object config file(s), so you don’t want to keep any sensitive
information (usernames, passwords, etc) in there. If you need to specify a username and/or password
in a command definition use a $USERNS mpcro to hide it. $USERN$ macros are defined in one or
more[resource filgs. The CGls will not attempt to read the contents of resource files, so you can set
more restrictive permissions (600 or 660) on them. See the seaaplece.cfdile in the base of the

Nagios distribution for an example of how to define SUSERN$ macros.

Strip Dangerous Characters From Macros

Use the illegal_macro_output cHars directive to strip dangerous characters from the $SHOSTOUT-
PUTS$, $SERVICEOUTPUTS$, SHOSTPERFDATAS, and $SERVICEPERFDATA$ macros before
they’re used in notifications, etc. Dangerous characters can be anything that might be interpreted by
the shell, thereby opening a security hole. An example of this is the presence of backtick () characters
in the $HOSTOUTPUTS, $SERVICEOUTPUTS$, SHOSTPERFDATAS$, and/or $SERVICEPERF-
DATAS$ macros, which could allow an attacker to execute an arbitrary command as the nagios user
(one good reason not to run Nagios as the root user).

183

Tuning Nagios For Maximum Performance

Intro duction

So you've finally got Nagios up and running and you want to know how you can tweak it a bit... Here
are a few things to look at for optimizing Nagios. Let me know if you think of any others...

Optimization Tips:

1. Use aggregated status update&nabling aggregated status updates (with the dggre-

[gate status updates option) will greatly reduce the load on your monitoring host because it won't
be constantly trying to update log. This is especially recommended if you are monitor-
ing a large number of services. The main trade-off with using aggregated status updates is that
changes in the states of hosts and services will not be reflected immediately in the status file. This
may or may not be a big concern for you.

2. Use a ramdisk for holding status datalf you're using the standafd status|log and yonat
using aggregated status updates, consider putting the directory where the status log is stored on a
ramdisk. This will speed things up quite a bit (in both the core program and the CGIs) because it
saves a lot of interrupts and disk thrashing.

3. Check service latencies to determine best value for maximum concurrent check$agios can
restrict the number of maximum concurrently executing service checks to the value you specify
with the{max_concurrent _cheg¢ks option. This is good because it gives you some control over how
much load Nagios will impose on your monitoring host, but it can also slow things down. If you
are seeing high latency values (> 10 or 15 seconds) for the majority of your service checks (via
the[extinfo C3I), you are probably starving Nagios of the checks it needs. That's not Nagios’s
fault - its yours. Under ideal conditions, all service checks would have a latency of 0, meaning
they were executed at the exact time that they were scheduled to be executed. However, it is
normal for some checks to have small latency values. | would recommend taking the minimum
number of maximum concurrent checks reported when running Nagios withctimmand line
argument and doubling it. Keep increasing it until the average check latency for your services is
fairly low. More information on service check scheduling can be fpundi here.

4. Use passive checks when possiblEhe overhead needed to process the results of passive service
checks is much lower than that of "normal” active checks, so make use of that piece of info if
you’re monitoring a slew of services. It should be noted that passive service checks are only
really useful if you have some external application doing some type of monitoring or reporting, so
if you're having Nagios do all the work, this won't help things.

5. Avoid using interpreted plugins. One thing that will significantly reduce the load on your moni-
toring host is the use of compiled (C/C++, etc.) plugins rather than interpreted script (Perl, etc)
plugins. While Perl scripts and such are easy to write and work well, the fact that they are
compiled/interpreted at every execution instance can significantly increase the load on your moni-
toring host if you have a lot of service checks. If you want to use Perl plugins, consider compiling
them into true executables using perlcc(1) (a utility which is part of the standard Perl distribution)
or compiling Nagios with an embedded Perl interpreter (see below).

6. Use the embedded Perl interpreterlf you're using a lot of Perl scripts for service checks, etc.,
you will probably find that compiling an embedded Perl interpreter into the Nagios binary will
speed things up. In order to compile in the embedded Perl interpreter, you'll need to supply the
--enable-embedded-peasption to the configure script before you compile Nagios. Also, if you
use the-with-perlcacheoption, the compiled version of all Perl scripts processed by the embed-
ded interpreter will be cached for later reuse.

184

7.

10.

11.

Optimize host check commandslf you're checking host states using the check_ping plugin

you'll find that host checks will be performed much faster if you break up the checks. Instead of spec-
ifying a max_attemptsalue of 1 in the host definition and having the check_ping plugin send 10
ICMP packets to the host, it would be much faster to sehthe attemptsalue to 10 and only

send out 1 ICMP packet each time. This is due to the fact that Nagios can often determine the
status of a host after executing the plugin once, so you want to make the first check as fast as
possible. This method does have its pitfalls in some situations (i.e. hosts that are slow to respond
may be assumed to be down), but | you'll see faster host checks if you use it. Another option would be
to use a faster plugin (i.e. check_fping) ashtbst check _commaristead of check_ping.

. Don't schedule regular host checksDo NOT schedule regular checks of hosts unless absolutely

necessary. There are not many reasons to do this, as host checks are performed on-demand as
needed. To disable regular checks of a host, sehthek intervabirective in thg¢ host definitipn

to 0. If you do need to have regularly scheduled host checks, try to use a longer check interval
and make sure your host checks are optimized (see above).

. Don’t use agressive host checkindJnless you're having problems with Nagios recognizing

host recoveries, | would recommenat enabling the use aggressive _host _cheg¢king option. With
this option turned off host checks will execute much faster, resulting in speedier processing of
service check results. However, host recoveries can be missed under certain circumstances when
this it turned off. For example, if a host recovers and all of the services associated with that host
stay in non-OK states (and don’t "wobble" between different non-OK states), Nagios may miss
the fact that the host has recovered. A few people may need to enable this option, but the majority
don’t and | would recommenabt using it unless you find it necessary...

Increase external command check intervallf you're processing a lot of external commands

(i.e. passive checks ir] a distributed sptup, you'll probably want to get the command_chelck _inter-
[val variable to-1. This will cause Nagios to check for external commands as often as possible.
This is important because most systems have small pipe buffer sizes (i.e. 4KB). If Nagios doesn't
read the data from the pipe fast enough, applications that write to the external command file (i.e.
the[NSCA daemdn) will block and wait until there is enough free space in the pipe to write their
data.

Optimize hardware for maximum performance. Your system configuration and your hardware
setup are going to directly affect how your operating system performs, so they’ll affect how
Nagios performs. The most common hardware optimization you can make is with your hard
drives. CPU and memory speed are obviously factors that affect performance, but disk access is
going to be your biggest bottlenck. Don’t store plugins, the status log, etc on slow drives (i.e. old
IDE drives or NFS mounts). If you've got them, use UltraSCSI drives or fast IDE drives. An
important note for IDE/Linux users is that many Linux installations do not attempt to optimize
disk access. If you don’t change the disk access parameters (by using a utitidpbkem),

you'll loose out on dot of the speedy features of the new IDE drives.

185

Using The Nagiostats Utility

Intro duction

A utility called nagiostatds included in the Nagios distribution. It is compiled and installed along with
the main Nagios daemon.

The nagiostats utility allows you to obtain various information about a running Nagios process. You
can obtain information either in human-readable or MRTG-compatible format.

Usagelnfor mation

You can run the@agiostatsutility with the --help option to get usage information:
[nagios@lanman ~]# /usr/local/nagios/bin/nagiostats --help

Nagios Stats 2.0al

Copyright (c) 2003 Ethan Galstad (nagios@nagios.org)
Last Modified: 11-18-2003

License: GPL

Usage: /usr/local/nagios/bin/nagiostats [options]

Startup:

-V, --version display program version information and exit.
-L, --license display license information and exit.

-h, --help display usage information and exit.

Input file:
-c, --config=FILE specifies location of main Nagios config file.

Output:

-m, --mrtg display output in MRTG compatible format.

-d, --data=VARS comma-seperated list of variables to output in MRTG
(or compatible) format. See possible values below.
Percentages are rounded, times are in milliseconds.

MRTG DATA VARIABLES (-d option):

NUMSERVICES total number of services.

NUMHOSTS total number of services.

NUMSVCOK number of services OK.

NUMSVCWARN number of services WARNING.

NUMSVCUNKN number of services UNKNOWN.

NUMSVCCRIT number of services CRITICAL.

NUMSVCPROB number of service problems (WARNING, UNKNOWN or CRITIAL).

NUMHSTUP number of hosts UP.
NUMHSTDOWN number of hosts DOWN.
NUMHSTUNR number of hosts UNREACHABLE.

NUMHSTPROB number of host problems (DOWN or UNREACHABLE).
XXXACTSVCLAT MIN/MAX/AVG active service check latency (ms).
XXXACTSVCEXT MIN/MAX/AVG active service check execution time (ms).
XXXACTSVCPSC MIN/MAX/AVG active service check % state change.
xXXPSVSVCPSC MIN/MAX/AVG passive service check % state change.
XXXSVCPSC MIN/MAX/AVG service check % state change.
XXXACTHSTLAT MIN/MAX/AVG active host check latency (ms).
XXXACTHSTEXT MIN/MAX/AVG active host check execution time (ms).
XXXACTHSTPSC MIN/MAX/AVG active host check % state change.
XXXPSVHSTPSC MIN/MAX/AVG passive host check % state change.

186

XXXHSTPSC MIN/MAX/AVG host check % state change.
NUMACTHSTCHKxM number of active host checks in last 1/5/15/60 minutes.
NUMPSVHSTCHKxM number of passive host checks in last 1/5/15/60 minutes.
NUMACTSVCCHKxM number of active service checks in last 1/5/15/60 minutes.
NUMPSVSVCCHKxM number of passive service checks in last 1/5/15/60 minutes.

Note: Replace x’s in MRTG variable names with 'MIN’, '"MAX’, '"AVG’, or the
the appropriate number (i.e. '1’,’5’, '15’, or '60’).

[nagios@lanman ~]#

Human-Readable Output

For normal operation, run tlmagiostatsutility, specifying only the config file location as an argu-
ment, as follows:

[nagios@lanman ~}# /usr/local/nagios/bin/nagiostats -c /usr/local/nagios/etc/nagios.cfg

Nagios Stats 2.0al

Copyright (c) 2003 Ethan Galstad (nagios@nagios.org)

Last Modified: 11-18-2003

License: GPL

CURRENT STATUS DATA

Status File: Jusr/local/nagios/var/status.dat
Status File Age: 0d Oh Om 13s

Status File Version: 2.0-very-pre-alpha

Program Running Time: 14d 17h 19m 13s

Total Services: 32

Services Checked: 32

Services Scheduled: 29

Active Service Checks: 29

Passive Service Checks: 3

Total Service State Change: 0.000 / 65.530/2.930 %
Active Service Latency: 0.048/14.837/1.035 %
Active Service Execution Time: 0.076 / 60.006 / 4.301 sec
Active Service State Change: 0.000/10.530/0.762 %

Active Services Last 1/5/15/60 min: 1/13/29/29
Passive Service State Change: 0.000/ 65.530 / 23.883 %
Passive Services Last 1/5/15/60 min: 0/0/0/0

Services Ok/Warn/Unk/Crit: 23/5/1/3

Services Flapping: 1

Services In Downtime: 0

Total Hosts: 9

Hosts Checked: 9

Hosts Scheduled: 9

Active Host Checks: 9

Passive Host Checks: 0

Total Host State Change: 0.000/28.420 / 4.034 %
Active Host Latency: 0.000/15.741/5.443 %
Active Host Execution Time: 1.022/10.032/ 3.047 sec
Active Host State Change: 0.000/28.420/ 4.034 %
Active Hosts Last 1/5/15/60 min: 0/8/9/9

Passive Host State Change: 0.000/0.000 / 0.000 %
Passive Hosts Last 1/5/15/60 min: 0/0/0/0

Hosts Up/Down/Unreach: 7/11/1

Hosts Flapping: 0

Hosts In Downtime: 0

[nagios@lanman ~]#

187

As you can see, the utility displays a number of different metrics pertaining to the Nagios process.
Metrics which have multiple values are (unless otherwise specified) min, max and average values for
that partciular metric.

MRTG Integration

You can use theagiostatautility to display various Nagios metrics using MRTG (or other compatible
program). To do so, run thmagiostatautility using the--mrtg and--data arguments. Thedata argu-
ment is used to specify what statistics should be graphed. Possible values-fiatthargument can

be found by running theagiostatsutility with the --help option.

Here’'s an MRTG config file snippet for using thagiostatautility for graphing average service
latency and execution time.

Service Latency and Execution Time

Target[nagios-a]: ‘/usr/local/nagios/bin/nagiostats --mrtg --data=AVGACTSVCLAT,AVGACTSVCEXT"
MaxBytes[nagios-a]: 100000

Title[nagios-a]: Average Service Check Latency and Execution Time
PageTop[nagios-a]: <H1>Average Service Check Latency and Execution Time</H1>
Options[nagios-a]: growright,gauge,nopercent

YLegend[nagios-a]: Milliseconds

ShortLegend[nagios-a]:

Legendl[nagios-a]: Latency:

LegendOl[nagios-a]: Execution Time:

Legendl[nagios-a]: Latency

Legend2[nagios-a]: Execution Time

Legend3[nagios-a]: Maximal 5 Minute Latency

Legend4[nagios-a]: Maximal 5 Minute Execution Time

The MRTG graphs generated from the above config snippet look like this:

188

"Daily' Graph (5 Minute Average)

10.58 k

Millizeconds

0.0 k '

8.1k 1
5.4 k &

2.7 k il

..............

6 & 10 12 14 16 18 20 22 o Z 4 & & 1o 12

Ilax Latency: 106k &verage Latency: 4200 Current Latency: 3420
DMlax Frecution Tine: 49930 Awerage Frecution Tine:d2230 Current Frecution Time: 42350

“Weekly' Graph (30 Minute Average)

3.2 K : : : : : :
g T T T o s WY,
T 3.9k : ; i : : 17
= . : : . : :
[}
_E 2.6k T
- 1.3 k A
=
0.0 K
Sat Sun Mon Tue Wed Thu Fri Sat Sun
Ilax Latency:4103.0 &verage Latency: 4700 Current Latency: 3680

Mlax Frecution Tine: 42470 Awerage Frecution Tine: 42500 Current Frecution Time: 45960

"Monthly' Graph (2 Hour Average)

4.8 k

Millizeconds

0.0k

J.6 k1

Zuad kT

1.2 kA

Week 42 Week 43 Week dd Week 45 Week d&

Ilax Latency:3503.0 &verage Latency: 4260 Current Latency: 3330
DMlax Frecution Tine: 46290 Awerage Frecution Time 42270 Current Frecution Tine:4302.0

189

Using Macros In Commands

Macros

One of the features available in Nagios is the ability to use macros in command defintions. Immedi-
ately prior to the execution of a command, Nagios will replace all macros in the command with their
corresponding values. This allows you to define a few generic commands to handle all your needs.

Macro Substitution

Before any commands (host and service checks, notifications, event handlers, etc.) are executed,
Nagios will replace any macros it finds in the command definition with their corresponding values.

When you use host and service macros in command definitions, they refer to values for the host or
service for which the command is being run. Let’s try an example. Assuming we are using a host defi-
nition and acheck_pingcommand defined like this:

define host{
host_name linuxbox
address 192.168.1.2
check_command check_ping

define command{
command_name check_ping
command_line /usr/local/nagios/libexec/check_ping -H $HOSTADDRESS$ -w 100.0,90% -c 200.0,60%

}
the expanded/final command line to be executed for the host’s check command would look like this:

lusr/local/nagios/libexec/check_ping -H 192.168.1.2 -w 100.0,90% -c 200.0,60%

You can pass arguments to commands as well, which is quite handy if you'd like to keep your
command definitions rather generic. Arguments are specified in the object (i.e. host or service) defini-
tion, by seperating them from the command name with exclamation points (!) like so:

define service{
host_name linuxbox
service_description PING

check_command check_ping!200.0,80%!400.0,40%

In the example above, the service check command has two arguments (which can be referenced with
macros). The $ARG1$ macro will be "200.0,80%" and $ARG2$ will be "400.0,40%" (both
without quotes). Assuming we are using the host definition given earliercratla pingcommand

defined like this:

define command{
command_name check_ping
command_line /usr/local/nagios/libexec/check_ping -H $HOSTADDRESSS$ -w $ARG1$ -¢c $ARG2$

}

190

the expanded/final command line to be executed for the service’s check command would look like
this:

/usr/local/nagios/libexec/check_ping -H 192.168.1.2 -w 200.0,80% -c 400.0,40%

On-DemandMacros

Normally when you use host and service macros in command definitions, they refer to values for the
host or service for which the command is being run. For instance, if a host check command is being

executed for a host named "linuxbox”, all the host macros listed in the table below will refer to values
for that host ("linuxbox").

If you would like to reference values for another host or service in a command (for which the
command is not being run), you can use what are called "on-demand" macros. On-demand macros
look like normal macros, except for the fact that they contain an identifier for the host or service from
which they should get their value. Here’s the basic format for on-demand macros:

e $HOSTMACROhost_nam$
® $SERVICEMACROhost _nameservice_descriptidh

Note that the macro name is seperated from the host or service identifier by a colon (;). For on-demand
service macros, the service identifier consists of both a host name and a service description - these are
seperated by a colon (;) as well.

Examples of on-demand host and service macros follow:

$HOSTDOWNTIME:myhost$
$SERVICESTATEID:novellserver:DS Database$

Macro Cleansng

Some macros are stripped of potentially dangerous shell metacharacters before being substituted into
commands to be executed. Which characters are stripped from the macros depends on the setting of
thelillegal _macro_output _chars directive. The following macros are stripped of potentially dangerous
characters:

1. [fHOSTOUTPUTK

2. [SHOSTPERFDATAS

3. [fHOSTACKAUTHOR$
4. [SHOSTACKCOMMENT$
5

6

7

8

. [$SERVICEOUTPUT]|$
. [$SERVICEPERFDATA$

. [SSERVICEACKAUTHOR}
. [$SERVICEACKCOMMENT}

Macros asEnvironment Vari ables

Starting with Nagios 2.0, most macros have been made available as environment variables. This means
that scripts that are run from Nagios (i.e. service and host check commands, notification commands,
etc.) can reference these macros directly as standard environment variables. For purposes of security
and sanityl, SUSERh$ and "on-demand" host and service macros are not made available as environ-
ment variables. Environment variables that contain macros are named the same as their corresponding
macro names (listed below), with "NAGIOS_" prepended to their names. For example, the BHOST-

191

NAME$ macro would be available as an environment variable named "NAGIOS_HOSTNAME".

Macro Validity

Although macros can be used in all commands you define, not all macros may be "valid" in a particu-
lar type of command. For example, some macros may only be valid during service notification
commands, whereas other may only be valid during host check commands. There are ten types of
commands that Nagios recognizes and treats differently. They are as follows:

Service checks
Service notifications
Host checks
Host notifications
Servicg¢ event handlgrs and/or a global service event handler
Hosf event handlérs and/or a global host event handler
command
command
Service performance data commands
Hos} performance data commands

© NN

=
©

The tables below list all macros currently available in Nagios, along with a brief description of each
and the types of commands in which they are valid. If a macro is used in a command in which it is
invalid, it is replaced with an empty string. It should be noted that macros consist of all uppercase

characters and are enclose&icharacters.

Legend
No | The macro is not available
Yes| The macro is available
Service Host
Event Event
Handlers, | Handlers, Service
Service Service Host | Host Notifi- Glob_al Global Performance Host Perfor-
Macro Name I - Service Host mance Data
Checks| Notifications | Checks cations Data
Event Event Commands
Commands
Handler, Handler,
OCHP}
Command | Command
Host MacrosF]
[FHOSTNAME$ Yes Yes Yes Yes Yes Yes Yes Yes
[FHOSTALIASS Yes Yes Yes Yes Yes Yes Yes Yes
$HOSTADDRESSH Yes Yes Yes Yes Yes Yes Yes Yes
SHOSTSTATE$ Yes Yes Yes[f] | Yes Yes Yes Yes Yes
[EHOSTSTATEID$ Yes Yes Yes[]] | Yes Yes Yes Yes Yes
[FBHOSTSTATETYPEP Yes Yes Yes[f] | Yes Yes Yes Yes Yes
[FHOSTATTEMPT$ Yes Yes Yes Yes Yes Yes Yes Yes
SHOSTLATENCY$ Yes Yes Yes Yes Yes Yes Yes Yes

192

[FHOSTEXECUTIONTIME$ Yes Yes Yes[{] | Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes Yes Yes
[FHOSTDURATIONSECH Yes Yes Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes Yes Yes
[FHOSTPERCENTCHANGH$ Yes Yes Yes Yes Yes Yes Yes Yes
FHOSTGROUPNAMER Yes Yes Yes Yes Yes Yes Yes Yes
[FHOSTGROUPALIASH Yes Yes Yes Yes Yes Yes Yes Yes
[SLASTHOSTCHECK$ Yes Yes Yes Yes Yes Yes Yes Yes
BLASTHOSTSTATECHANGEB Yes Yes Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes Yes Yes
FSLASTHOSTDOWN$ Yes Yes Yes Yes Yes Yes Yes Yes
[BLASTHOSTUNREACHABLE$ Yes Yes Yes Yes Yes Yes Yes Yes
Yes Yes Yes[f] | Yes Yes Yes Yes Yes
BHOSTPERFDATAP Yes Yes YesE| Yes Yes Yes Yes Yes
[FHOSTCHECKCOMMAND$ Yes Yes Yes Yes Yes Yes Yes Yes
No No No Yes No No No No
[FHOSTACKCOMMENT$ No No No Yes No No No No
Yes Yes Yes Yes Yes Yes Yes Yes
[FBHOSTNOTESURL}S Yes Yes Yes Yes Yes Yes Yes Yes
BHOSTNOTESH Yes Yes Yes Yes Yes Yes Yes Yes
Service Macros:

Yes Yes No No Yes No Yes No
[ESERVICESTATE$ Yes[? | Yes No No Yes No Yes No
[ESERVICESTATEID$ Yes[| Yes No No Yes No Yes No
[FSERVICESTATETYPERS Yes Yes No No Yes No Yes No
Yes Yes No No Yes No Yes No
Yes Yes No No Yes No Yes No
[FSERVICEEXECUTIONTIME$ Yes[? | Yes No No Yes No Yes No
[FSERVICEDURATION$ Yes Yes No No Yes No Yes No
[FSERVICEDURATIONSECH Yes Yes No No Yes No Yes No
[FSERVICEDOWNTIME$ Yes Yes No No Yes No Yes No
FSERVICEPERCENTCHANGES Yes Yes No No Yes No Yes No
[FSERVICEGROUPNAMES Yes Yes No No Yes No Yes No
[FSERVICEGROUPALIASH Yes Yes No No Yes No Yes No
[FLASTSERVICECHECK} Yes Yes No No Yes No Yes No
FLASTSERVICESTATECHANGER Yes Yes No No Yes No Yes No
Yes Yes No No Yes No Yes No
[FLASTSERVICEWARNING$ Yes Yes No No Yes No Yes No
FLASTSERVICEUNKNOWN$ Yes Yes No No Yes No Yes No
[FLASTSERVICECRITICAL$ Yes Yes No No Yes No Yes No
[ESERVICEOUTPUTE Yes[?] | Yes No No Yes No Yes No
[ESERVICEPERFDATAB Yes[? | Yes No No Yes No Yes No
[FSERVICECHECKCOMMAND$ Yes Yes No No Yes No Yes No
[FSERVICEACKAUTHOR$ No Yes No No No No No No
FSERVICEACKCOMMENT$ No Yes No No No No No No

193

[FSERVICEACTIONURLS Yes Yes No No Yes No Yes No
[FSERVICENOTESURLS Yes Yes No No Yes No Yes No
FSERVICENOTESH Yes Yes No No Yes No Yes No
Summary Macros:

BTOTALHOSTSUP) Yes Yes[Yes Yes[Yes Yes Yes Yes
FTOTALHOSTSDOWN$ Yes Yes[] Yes Yes[Yes Yes Yes Yes
BTOTALHOSTSUNREACHABLE$ Yes Yes[¥] Yes Yes[¥] Yes Yes Yes Yes
FTOTALHOSTSDOWNUNHANDLED$ Yes Yes[] Yes Yes[] Yes Yes Yes Yes
BTOTALHOSTSUNREACHABLEUNHANDLED$| Yes Yes¥] Yes Yes[¥] Yes Yes Yes Yes
[FTOTALHOSTPROBLEMSH Yes Yes[] Yes Yes[Yes Yes Yes Yes
[FTOTALHOSTPROBLEMSUNHANDLED} Yes Yes[] Yes Yes[] Yes Yes Yes Yes
[FTOTALSERVICESOK$ Yes Yes[Yes Yes[Yes Yes Yes Yes
[FTOTALSERVICESWARNING}$ Yes Yes[] Yes Yes[] Yes Yes Yes Yes
BTOTALSERVICESCRITICAL$ Yes Yes[¥] Yes Yes[¥] Yes Yes Yes Yes
FTOTALSERVICESUNKNOWN$ Yes Yes[] Yes Yes[] Yes Yes Yes Yes
BTOTALSERVICESWARNINGUNHANDLED$ | Yes Yes¥] Yes Yes[F] Yes Yes Yes Yes
[FTOTALSERVICESCRITICALUNHANDLED$ | Yes Yes[] Yes Yes[] Yes Yes Yes Yes
[FTOTALSERVICESUNKNOWNUNHANDLED$ | Yes Yes[] Yes Yes[] Yes Yes Yes Yes
BTOTALSERVICEPROBLEMSH Yes Yes[d] Yes Yes[d] Yes Yes Yes Yes
[FTOTALSERVICEPROBLEMSUNHANDLEDE | Yes Yes[] Yes Yes[] Yes Yes Yes Yes
Notification Macros:

ENOTIFICATIONTYPES$ No Yes No Yes No No No No
[ENOTIFICATIONNUMBER$ No Yes No Yes No No No No
Contact Macros:

No Yes No Yes No No No No
No Yes No Yes No No No No
No Yes No Yes No No No No
FCONTACTPAGER} No Yes No Yes No No No No
[FCONTACTADDRESSH} No Yes No Yes No No No No
Date Macros:

FLONGDATETIMEY Yes Yes Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes Yes Yes
&3 i Yes Yes Yes Yes Yes Yes Yes Yes
5 3 Yes Yes Yes Yes Yes Yes Yes Yes
83 8 Yes Yes Yes Yes Yes Yes Yes Yes
File Macros:

Yes Yes Yes Yes Yes Yes Yes Yes
[FSTATUSDATAFILES Yes Yes Yes Yes Yes Yes Yes Yes
[FCOMMENTDATAFILEJ Yes Yes Yes Yes Yes Yes Yes Yes
[FDOWNTIMEDATAFILEY Yes Yes Yes Yes Yes Yes Yes Yes
FRETENTIONDATAFILE$ Yes Yes Yes Yes Yes Yes Yes Yes
[FOBJECTCACHEFILE} Yes Yes Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes Yes Yes
[BLOGFILE] Yes Yes Yes Yes Yes Yes Yes Yes

194

[FBRESOURCEFILE

Yes

Yes

Yes Yes Yes Yes

$COMMANDFILEH

Yes

Yes

Yes Yes Yes Yes

[BHOSTPERFDATAFILE$

Yes

Yes

Yes Yes Yes Yes

[FSERVICEPERFDATAFILES

Yes

Yes

Yes Yes Yes Yes

Misc Macros:

BPROCESSSTARTTIME$

Yes

Yes

Yes Yes Yes Yes

sy

$SADMINEMAILS

Yes

Yes

Yes Yes Yes Yes

sy

$ADMINPAGERS

Yes

Yes

Yes Yes Yes Yes

Yes

Yes

Yes Yes Yes Yes

$USERN$

i

Yes

Yes

Yes Yes Yes Yes

Macro Descriptions

Host Macros]

$HOSTNAMES

Short name for the host (i.e
"biglinuxbox™). This value is
taken from théhost_name
directive in th¢ host defini-
fion.

$HOSTALIASS

Long name/description for
the host. This value is taken
from thealias directive in

the| host definition.

$HOSTADDRESS$

Address of the host. This
value is taken from the
addresdirective in th¢ hogt
[definition].

$HOSTSTATES

A string indicating the
current state of the host
("UP", "DOWN", or
"UNREACHABLE").

$HOSTSTATEIDS

A number that corresponds
to the current state of the
host: 0=UP, 1=DOWN,
2=UNREACHABLE.

195

$HOSTSTATETYPES$

A string indicating the stafe
ftypd for the current host
check ("HARD" or "SOFT").
Soft states occur when host
checks return a non-OK
(non-UP) state and are in th
process of being retried.
Hard states result when hog
checks have been checked
specified maximum number
of times.

$HOSTATTEMPTS

The number of the current
host check retry. For
instance, if this is the secon
time that the host is being
rechecked, this will be the
number two. Current attemp
number is really only useful
when writing host event
handlers for "soft" states the
take a specific action based
on the host retry number.

$HOSTLATENCY$S$

A (floating point) number
indicating the number of
seconds that scheduledost
check lagged behind its
scheduled check time. For
instance, if a check was
scheduled for 03:04:15 and
didn’t get executed until
03:14:17, there would be a
check latency of 2.0 second
On-demand host checks ha
a latency of zero seconds.

$HOSTEXECUTIONTIMES$

A (floating point) number
indicating the number of
seconds that the host check
took to execute (i.e. the
amount of time the check
was executing).

$HOSTDURATIONS

A string indicating the
amount of time that the hos
has spent in its current state
Format is "XXh YYm ZZs",
indicating hours, minutes ar
seconds.

196

$HOSTDURATIONSECS

A number indicating the
number of seconds that the
host has spent in its current
state.

$HOSTDOWNTIMES

A number indicating the
current "downtime depth” fo
the host. If this host is
currently in a period of
[scheduled downtinpe, the
value will be greater than
zero. If the host is not
currently in a period of
downtime, this value will be
zero.

$HOSTPERCENTCHANGES$

A (floating point) number

indicating the percent state
change the host has under-
gone. Percent state change

used by the flap detection

algorithm.

$HOSTGROUPNAMES$

The short name of the host-
group that this host belongs
to. This value is taken from
thehostgroup_namdirec-
tive in thg hostgroup defini-
ftion. If the host belongs to
more than one hostgroup th
macro will contain the name
of just one of them.

$HOSTGROUPALIASS

The longer name/alias of thg
hostgroup that this host
belongs to. This value is
taken from thalias directive
in thel hostgroup definition. |
the host belongs to more th
one hostgroup, this macro
contains the alias of just ong¢
of them.

$LASTHOSTCHECKS$

This is a timestamp in time_|
format (seconds since the
UNIX epoch) indicating the
time at which a check of the
host was last performed.

197

$LASTHOSTSTATECHANGES$

This is a timestamp in time_|
format (seconds since the

UNIX epoch) indicating the
time the host last changed
state.

$LASTHOSTUPS

This is a timestamp in time_|
format (seconds since the
UNIX epoch) indicating the
time at which the host was
last detected as being in an
UP state.

$LASTHOSTDOWNS

This is a timestamp in time_|
format (seconds since the

UNIX epoch) indicating the
time at which the host was
last detected as being in a
DOWN state.

$LASTHOSTUNREACHABLES$

This is a timestamp in time_|
format (seconds since the
UNIX epoch) indicating the
time at which the host was
last detected as being in an
UNREACHABLE state.

$HOSTOUTPUTS

The text output from the las
host check (i.e. "Ping OK").

$HOSTPERFDATAS$

This macro contains any
[performance data that may
have been returned by the
last host check.

$HOSTCHECKCOMMANDS$

This macro contains the
name of the command (alorn
with any arguments passed
it) used to perform the host
check.

$HOSTACKAUTHORS

A string containing the nam
of the user who acknowl-
edged the host problem. Th
macro is only valid in notifi-
cations where the $NOTIFI-
CATIONTYPES$ macro is se
to "ACKNOWLEDGE-
MENT".

198

$HOSTACKCOMMENTS$

A string containing the
acknowledgement commen
that was entered by the use
who acknowledged the host
problem. This macro is only
valid in notifications where
the SNOTIFICATION-
TYPES$ macro is set to
"ACKNOWLEDGEMENT".

$HOSTACTIONURLS

Action URL for the host.
This value is taken from the
action_urldirective in the
lextended host informatign

[definition.

$HOSTNOTESURLS

Notes URL for the host. Thig
value is taken from the
notes_urldirective in the
lextended host informatign

[definition.

$HOSTNOTESS

Notes for the host. This valu
is taken from th@otesdirec-

tive in thd extended hoist

[information definition.

Service Macros:

$SERVICEDESCS$

The long name/description ¢
the service (i.e. "Main
Website"). This value is
taken from thalescription
directive of th¢ service deffi-
[nitior]

$SERVICESTATES$

A string indicating the
current state of the service
("OK", "WARNING",
"UNKNOWN?", or "CRITI-
CAL".

$SERVICESTATEID$

A number that corresponds
to the current state of the
service: 0=0K,
1=WARNING, 2=CRITI-
CAL, 3=UNKNOWN.

199

$SERVICESTATETYPES$

A string indicating the stafe
ftypd for the current service
check ("HARD" or "SOFT").
Soft states occur when
service checks return a
non-OK state and are in the
process of being retried.
Hard states result when
service checks have been
checked a specified
maximum number of times.

$SERVICEATTEMPTS

The number of the current
service check retry. For
instance, if this is the secon
time that the service is bein
rechecked, this will be the
number two. Current attemp
number is really only useful
when writing service event
handlers for "soft" states the
take a specific action based
on the service retry number

$SERVICELATENCY$

A (floating point) number
indicating the number of
seconds that a scheduled
service check lagged behing
its scheduled check time. Fq
instance, if a check was
scheduled for 03:04:15 and
didn’t get executed until
03:14:17, there would be a
check latency of 2.0 second

$SERVICEEXECUTIONTIMES$

A (floating point) number
indicating the number of
seconds that the service
check took to execute (i.e.
the amount of time the chec
was executing).

$SERVICEDURATIONS$

A string indicating the
amount of time that the
service has spent in its
current state. Format is "XX
YYm ZZs", indicating hours,
minutes and seconds.

200

$SERVICEDURATIONSECS

A number indicating the
number of seconds that the
service has spent in its
current state.

$SERVICEDOWNTIMES$

A number indicating the
current "downtime depth” fo
the service. If this service is
currently in a period of
[scheduled downtinpe, the
value will be greater than
zero. If the service is not
currently in a period of
downtime, this value will be
zero.

$SERVICEPERCENTCHANGES$

A (floating point) number

indicating the percent state
change the service has und
gone. Percent state change

used by the flap detection

algorithm.

$SERVICEGROUPNAME$

The short name of the
servicegroup that this servig
belongs to. This value is
taken from theservice-
group_namalirective in the
definition. If
the service belongs to more
than one servicegroup this
macro will contain the name
of just one of them.

$SERVICEGROUPALIASS

The long name/alias of the
servicegroup that this servig
belongs to. This value is
taken from thalias directive
in the[servicegrodp defini-
tion. If the service belongs t
more than one servicegroug
this macro will contain the
name of just one of them.

$LASTSERVICECHECKS$

This is a timestamp in time_|
format (seconds since the
UNIX epoch) indicating the
time at which a check of the
service was last performed.

201

$LASTSERVICESTATECHANGE$

This is a timestamp in time_|
format (seconds since the

UNIX epoch) indicating the
time the service last change
state.

$LASTSERVICEOKS$

This is a timestamp in time_|
format (seconds since the
UNIX epoch) indicating the
time at which the service we
last detected as being in an
OK state.

$LASTSERVICEWARNINGS

This is a timestamp in time_|
format (seconds since the
UNIX epoch) indicating the
time at which the service wa
last detected as being in a
WARNING state.

$LASTSERVICEUNKNOWNS

This is a timestamp in time_|
format (seconds since the
UNIX epoch) indicating the
time at which the service wa
last detected as being in an
UNKNOWN state.

$LASTSERVICECRITICAL$

This is a timestamp in time_|
format (seconds since the
UNIX epoch) indicating the
time at which the service wa
last detected as being in a
CRITICAL state.

$SERVICEOUTPUTS$

The text output from the las
service check (i.e. "Ping
OK").

$SERVICEPERFDATAS$

This macro contains any
[performance data that may
have been returned by the
last service check.

$SERVICECHECKCOMMANDS$

This macro contains the
name of the command (alorn
with any arguments passed
it) used to perform the
service check.

202

$SERVICEACKAUTHORS

A string containing the namyg
of the user who acknowl-
edged the service problem.
This macro is only valid in
notifications where the
$SNOTIFICATIONTYPES$
macro is set to
"ACKNOWLEDGEMENT".

$SERVICEACKCOMMENTS$

A string containing the
acknowledgement commen
that was entered by the use
who acknowledged the
service problem. This macrg
is only valid in notifications
where the $NOTIFICA-
TIONTYPE$ macro is set to
"ACKNOWLEDGEMENT".

$SERVICEACTIONURLS$

Action URL for the service.
This value is taken from the
action_urldirective in the
lextended service informati@

[definition.

$SERVICENOTESURLS$

Notes URL for the service.
This value is taken from the
notes_urldirective in the

extended service informati¢
[definitior].

$SERVICENOTESS

Notes for the service. This
value is taken from theotes
directive in thg extendgd
[service information defirji-

ftion).

Notification Macros:

SNOTIFICATIONTYPES$

A string identifying the type
of notification that is being
sent ("PROBLEM",
"RECOVERY",
"ACKNOWLEDGEMENT",
"FLAPPINGSTART" or
"FLAPPINGSTOP").

203

$NOTIFICATIONNUMBER$

The current notification
number for the service or
host. The notification
number increases by one (1
each time a new notification
is sent out for a host or
service (except for acknowl;
edgements). The notificatiof
number is reset to 0 when th
host or service recovers
(after the recovery notifica-
tion has gone out). Acknowl
edgements do not cause thg
notification number to
increase.

SUMMARY Macros:

This macro reflects the total

$TOTALHOSTSUPS number of hosts that are
currently in an UP state.
This macro reflects the total

$TOTALHOSTSDOWNS$ number of hosts that are

currently in a DOWN state.

$TOTALHOSTSUNREACHABLES$

This macro reflects the total
number of hosts that are
currently in an UNREACH-
ABLE state.

$TOTALHOSTSDOWNUNHANDLED$

This macro reflects the total
number of hosts that are
currently in a DOWN state
that are not currently being
"handled". Unhandled host
problems are those that are
not acknowledged, are not
currently in scheduled down
time, and for which checks
are currently enabled.

204

$TOTALHOSTSUNREACHABLEUNHANDLED$

This macro reflects the total
number of hosts that are
currently in an UNREACH-
ABLE state that are not
currently being "handled".
Unhandled host problems a
those that are not acknowl-
edged, are not currently in
scheduled downtime, and fq
which checks are currently
enabled.

$TOTALHOSTPROBLEMSS$

This macro reflects the total
number of hosts that are
currently either in a DOWN
or an UNREACHABLE
state.

$TOTALHOSTPROBLEMSUNHANDLED$

This macro reflects the total
number of hosts that are
currently either in a DOWN
or an UNREACHABLE state
that are not currently being
"handled". Unhandled host
problems are those that are
not acknowledged, are not
currently in scheduled down
time, and for which checks
are currently enabled.

$TOTALSERVICESOK$

This macro reflects the total
number of services that are
currently in an OK state.

$TOTALSERVICESWARNINGS

This macro reflects the total
number of services that are
currently in a WARNING
state.

$TOTALSERVICESCRITICALS$

This macro reflects the total
number of services that are
currently in a CRITICAL
state.

$TOTALSERVICESUNKNOWNS

This macro reflects the total
number of services that are
currently in an UNKNOWN
state.

205

$TOTALSERVICESWARNINGUNHANDLEDS$

This macro reflects the total
number of services that are
currently in a WARNING
state that are not currently
being "handled". Unhandled
services problems are those
that are not acknowledged,
are not currently in sched-
uled downtime, and for
which checks are currently
enabled.

$TOTALSERVICESCRITICALUNHANDLED$

This macro reflects the total
number of services that are
currently in a CRITICAL
state that are not currently
being "handled". Unhandled
services problems are those
that are not acknowledged,
are not currently in sched-
uled downtime, and for
which checks are currently
enabled.

$TOTALSERVICESUNKNOWNUNHANDLED$

This macro reflects the total
number of services that are
currently in an UNKNOWN
state that are not currently
being "handled". Unhandled
services problems are those
that are not acknowledged,
are not currently in sched-
uled downtime, and for
which checks are currently
enabled.

$TOTALSERVICEPROBLEMS$

This macro reflects the total
number of services that are
currently either in a
WARNING, CRITICAL, or
UNKNOWN state.

206

$TOTALSERVICEPROBLEMSUNHANDLED$

This macro reflects the total
number of services that are
currently either in a
WARNING, CRITICAL, or
UNKNOWN state that are
not currently being
"handled". Unhandled
services problems are those
that are not acknowledged,
are not currently in sched-
uled downtime, and for
which checks are currently
enabled.

Contact Macros:

$CONTACTNAMES

Short name for the contact
(i.e. "jdoe") that is being
notified of a host or service
problem. This value is takern
from thecontact_name
directive in the contact deffi-

[nition,

$CONTACTALIASS

Long name/description for
the contact (i.e. "John Doe"
being notified. This value is
taken from thalias directive
in thel contact definitidn.

$CONTACTEMAILS

Email address of the contag
being notified. This value is
taken from themaildirec-

tive in thg contact definitign.

$CONTACTPAGERS$

Pager number/address of th
contact being notified. This

value is taken from theager

directive in th¢ contact defi-
[nitior]

207

$CONTACTADDRESSNn$

Address of the contact bein
notified. Each contact can
have six different addresses
(in addition to email address
and pager number). The
macros for these addresses
are $CONTACTAD-
DRESS1$ - $SCONTAC-
TADDRESS6$. This value i
taken from theaddressx
directive in th¢ contact deffi-
[nition|.

Date Macros:

$LONGDATETIMES$

Current date/time stamp (i.€
Fri Oct 13 00:30:28 CDT
2000. Format of date is
determined bfy date_fornat

directive.

$SHORTDATETIMES$

Current date/time stamp (i.€
10-13-2000 00:30:28
Format of date is determine

by[date_formét directive.

Date stamp (i.€10-13-2000.

$DATES$ Format of date is determine
by[date_formét directive.
Current time stamp (i.e.
STIMES 00:30:28.
Current time stamp in time_|
$TIMETS format (seconds since the
UNIX epoch).
File Macros:

$MAINCONFIGFILES$

The location of thg mdin
config filg|.

$STATUSDATAFILES

The location of thE _status
data filg.

$COMMENTDATAFILES$

The location of the commen
data file.

$DOWNTIMEDATAFILES$

The location of the downtim
data file.

$RETENTIONDATAFILES$

The location of the retentipn
data fil¢.

$OBJECTCACHEFILES

The location of thf objdct
cache filg.

$TEMPFILE$ The location of thf temp file
$LOGFILE$ The location of th Tog file.

$RESOURCEFILES$

The location of thg resourte

$COMMANDFILE$

The location of thE_ commarh

$HOSTPERFDATAFILES$

The location of the host
performance data file (if
defined).

$SERVICEPERFDATAFILES$

The location of the service
performance data file (if
defined).

Misc Macros:

$PROCESSSTARTTIMES$

Time stamp in time_t format
(seconds since the UNIX
epoch) indicating when the
Nagios process was last
(re)started. You can deter-
mine the number of second
that Nagios has been runnir
(since it was last restarted)
by subtracting
$PROCESSSTARTTIMES$

from|$TIMETS.

$ADMINEMAILS

Global administrative email
address. This value is taken

from theladmin_email direc-

tive.

$ADMINPAGER$

Global administrative pager
number/address. This value
is taken from the

admin pager directive.

Thenth argument passed to
the command (notification,
event handler, service chec
$ARGNS etc.). Nagios supports up to
32 argument macros
(PARG1$ through
$ARG323).

Thenth user-definable
macro. User macros can be
defined in one or more
$USERN$ [resource filgs. Nagios
supports up to 32 user
macros (3USER1$ through
$USER32%).

Notes

1 These macros are not valid for the host they are associated with when that host is being checked (i.e.
they make no sense, as they haven't been determined yet).

2 These macros are not valid for the service they are associated with when that service is being
checked (i.e. they make no sense, as they haven’t been determined yet).

3 When host macros are used in service-related commands (i.e. service notifications, event handlers,
etc) they refer to they host that they service is associated with.

4 When host and service summary macros are used in notification commands, the totals are filtered to
reflect only those hosts and services for which the contact is authorized (i.e. hosts and services they are
configured to receive notifications for).

210

Information On The CGls

Intro duction

The various CGls distributed with Nagios are described here, along with the authorization require-
ments for accessing and using each CGI. By default the CGls require that you have authenticated to
the web server and are authorized to view any information you are requesting. For more information
on configuring your web server and CGI configuration file to allow for this, read the sections on
[setting up the web interfdce gnd CGI authorizftion.

Index

[Status CQlI

[Status map CGl

[WAP interface CG|
Status world CGI (VRML))
[Tactical overview CGl|
[Network outages C!
[Configuration CGlI
[Command CG!

[Extended information CG!
[Eventlog CGl

[Alert history CGJ
[Notifications CGJ

Trends CQl

[Availabflity reporting CGl
[Alert histogram CG|
[Alert summary CG|

Status CGl

—'HE
JBY
"
mL

o [l A il

File Name: status.cgi

211

Description:

This is the most important CGI included with Nagios. It allows you to view the current status of all
hosts and services that are being monitored. The status CGI can produce two main types of output -
a status overview of all host groups (or a particular host group) and a detailed view of all services
(or those associated with a particular host). Pretty icons can be associated with hosts by defining
lextended host and service information entries.

Authorization Requirements:

e If you ardauthorized for all hostgou can view all hostand all services.

e |f you ardauthorized for all servicggou can view all services.

e If you are arauthenticated contagtou can view all hosts and services for which you are a
contact.

Status Map CGl

“m s

e

File Name: statusmap.cqgi

Description:

This CGI creates a map of all hosts that you have defined on your network. The CGI uses Thomas
Boutell's[gd library (version 1.6.3 or higher) to create a PNG image of your network layout. The
coordinates used when drawing each host (along with the optional pretty icons) are taken from
[extended host informatipn definitions. If you'd prefer to let the CGIl automatically generate

drawing coordinates for you, use the default_statusmap Jayout directive to specify a layout algo-
rithm that should be used. If you can't seem to find this CGl, or if you have get errors when trying

to compile or run it, regd this FAQ.

Authorization Requirements:

e If you ardauthorized for all hostgou can view all hosts.
e [f you are amauthenticated contagtou can view hosts for which you are a contact.

Note: Users who are not authorized to view specific hosts williskeownnodes in those posi-
tions. | realize that they really shouldn’t segythingthere, but it doesn’t make sense to even
generate the map if you can't see all the host dependencies...

WAP Interface CGI

212

http://www.boutell.com/gd

File Name: statuswml.cgi

Description:

This CGI serves as a WAP interface to network status information. If you have a WAP-enable
device (i.e. an Internet-ready cellphone), you can view status information while you're on the go.
Different status views include hostgroup summary, hostgroup overview, host detail, service detalil,
all problems, and unhandled problems. In addition to viewing status information, you can also
disable notifications and checks and acknowledge problems from your cellphone. Pretty cool, huh?

Authorization Requirements:

If you ardauthorized for system informatigiou can view Nagios process information.

If you ardauthorized for all hosfgou can view status data for all hoatsl services.

If you ardauthorized for all servicg@gou can view status data for all services.

If you are arauthenticated contagtou can view status data for all hosts and services for
which you are a contact.

Status World CGI (VRML)

File Name: statuswrl.cgi

213

Description:

This CGI creates a 3-D VRML model of all hosts that you have defined on your network. Coordi-
nates used when drawing the hosts (as well as pretty texture maps) are defined using extdnded host
definitions. If you'd prefer to let the CGI automatically generate drawing coordinates

for you, use thg default_statuswrl_layout directive to specify a layout algorithm that should be

used. You'll need a VRML browser (like Cortopa, Cosmo Playgr or WorldView) installed on your
system before you can actually view the generated model.

Authorization Requirements:

e |f you ardauthorized for all hostgou can view all hosts.
e If you are arauthenticated contagtou can view hosts for which you are a contact.

Note: Users who are not authorized to view specific hosts williskeownnodes in those posi-
tions. | realize that they really shouldn’t seg/thingthere, but it doesn’t make sense to even
generate the map if you can’t see all the host dependencies...

Tactical Overview CGI

File Name: tac.cqi

Description:

This CGl is designed to server as a "birds-eye view" of all network monitoring activity. It allows
you to quickly see network outages, host status, and service status. It distinguishes between prob-
lems that have been "handled” in some way (i.e. been acknowledged, had notifications disabled,
etc.) and those which have not been handled, and thus need attention. Very useful if you've got a
lot of hosts/services you're monitoring and you need to keep a single screen up to alert you of
problems.

Authorization Requirements:

e If you ardauthorized for all hostgou can view all hostand all services.

e If you ardauthorized for all servicg@gou can view all services.

e |f you are arauthenticated contagtou can view all hosts and services for which you are a
contact.

Network Outages CGl

214

http://www.parallelgraphics.com/cortona/
http://www.cosmosoftware.com/
http://www.intervista.com/

File Name: outages.cgi

Description:

This CGI will produce a listing of "problem" hosts on your network that are causing network
outages. This can be particularly useful if you have a large network and want to quickly identify
the source of the problem. Hosts are sorted based on the severity of the outage they are causing.
More information on how the network outage CGI works can be here.

Authorization Requirements:

e [f you ardauthorized for all hostgou can view all hosts.
e If you are arauthenticated contagtou can view hosts for which you are a contact.

Configuration CGlI

File Name: config.cqi

Description:
This CGI allows you to view objects (i.e. hosts, host groups, contacts, contact groups, time periods,
services, etc.) that you have defined in your object configuration [file(s).

Authorization Requirements:

® You must bgauthorized for configuration informatipin order to any kind of configuration
information.

Command CGl

215

File Name: cmd.cgi

Description:

This CGl allows you to send commands to the Nagios process. Although this CGI has several
arguments, you would be better to leave them alone. Most will change between different revisions
of Nagios. Use the extended information CGI as a starting point for issuing commands.

Authorization Requirements:

® You must bgauthorized for system commalidrder to issue commands that affect the
Nagios process (restarts, shutdowns, mode changes, etc.).

e If you ardauthorized for all host commangisu can issue commands for all haatsl
services.

e If you ardauthorized for all service commaigsu can issue commands for all services.

e If you are arauthenticated contagtou can issue commands for all hosts and services for
which you are a contact.

Notes:

e If you have chosen not [to use authentication with the CGls, this CGiavdllow anyone to
issue commands to Nagios. This is done for your own protection. | would suggest removing
this CGl altogether if you decide not to use authentication with the CGls.

® |n order for the CGI to issue commands to Nagios, you will have to set the proper file and

directory permissions as describefl in this FAQ.

Extended Information CGI

]
1.
|

File Name: extinfo.cgi

216

Description:

This CGI allows you to view Nagios process information, host and service state statistics, host and
service comments, and more. It also serves as a launching point for sending commands to Nagios
via thelcommand C@l. Although this CGI has several arguments, you would be better to leave
them alone - they are likely to change between different releases of Nagios. You can access this
CGl by clicking on the 'Network Health’ and 'Process Information’ links on the side navigation

bar, or by clicking on a host or service link in the output of the status CGI.

Authorization Requirements:

® You must bgauthorized for system informatiam order to view Nagios process information.

e |f you ardauthorized for all hostgou can view extended information for all hositsl
services.

e |f you ardauthorized for all servicggou can view extended information for all services.
e If you are arauthenticated contagtou can view extended information for all hosts and
services for which you are a contact.

Event Log CGI

File Name: showlog.cgi

Description:

This CGI will display th¢ Tog file. If you haye log rotatjon enabled, you can browse notifications
present in archived log files by using the navigational links near the top of the page.

Authorization Requirements:

® You must béauthorized for system informatiam order to view the log file.

Alert History CGlI

217

File Name: history.cqgi

Description:

This CGl is used to display the history of problems with either a particular host or all hosts. The
output is basically a subset of the information that is displayed Iy the Tog fije CGI. You have the
ability to filter the output to display only the specific types of problems you wish to see (i.e. hard
and/or soft alerts, various types of service and host alerts, all types of alerts, etc.). If you have log
enabled, you can browse history information present in archived log files by using the
navigational links near the top of the page.

Authorization Requirements:

e |f you ardauthorized for all hostgou can view history information for all hostad alll
services.

e |f you ardauthorized for all servicggou can view history information for all services.

e If you are arauthenticated contagtou can view history information for all services and hosts
for which you are a contact.

Notifications CGlI

File Name: notifications.cgi

Description:

This CGl is used to display host and service notifications that have been sent to various contacts.
The output is basically a subset of the information that is displayed py the Tog flle CGI. You have
the ability to filter the output to display only the specific types of natifications you wish to see (i.e.
service notifications, host notifications, notifications sent to specific contacts, etc). If ydu hhve log
enabled, you can browse notifications present in archived log files by using the naviga-
tional links near the top of the page.

Authorization Requirements:

e |f you ardauthorized for all hostgou can view notifications for all hosasd all services.

e If you ardauthorized for all servicégou can view notifications for all services.

e If you are arauthenticated contagtou can view notifications for all services and hosts for
which you are a contact.

218

Trends CGl

File Name: trends.cgi

Description:

This CGl is used to create a graph of host or service states over an arbitrary period of time. In order
for this CGI to be of much use, you should enpble Tog rofation and keep archived logs in the path
specified by thf Tog_archive_phth directive. The CGI uses Thomas Bdutgll's gd library (version
1.6.3 or higher) to create the trends image. If you can’t seem to find this CGI or if you have get
errors when trying to compile or run it, rdad this FAQ.

Authorization Requirements:

e [f you ardauthorized for all hostgou can view trends for all hosasd all services.

e |f you ardauthorized for all servicggou can view trends for all services.

e [f you are amuthenticated contagtou can view trends for all services and hosts for which
you are a contact.

Availability Reporting CGl

SmE
L

e

File Name: avail.cgi

219

http://www.boutell.com/gd

Description:
This CGl is used to report on the availability of hosts and services over a user-specified period of

time. In order for this CGI to be of much use, you should epable log retation and keep archived
logs in the path specified by the log _archive |path directive.

Authorization Requirements:

e |f you ardauthorized for all hostgou can view availability data for all hostad all services.

e [f you ardauthorized for all servicégou can view availability data for all services.

e If you are arauthenticated contagtou can view availability data for all services and hosts for
which you are a contact.

Alert Histogram CGI

File Name: histogram.cgi

Description:
This CGl is used to report on the availability of hosts and services over a user-specified period of

time. In order for this CGI to be of much use, you should efable Tog rétation and keep archived
logs in the path specified by the Tog_archive Jpath directive. The CGI uses Thomas Boltell's gd
library (version 1.6.3 or higher) to create the histogram image. If you can’t seem to find this CGI
or if you have get errors when trying to compile or run it, FAQ.

Authorization Requirements:

e If you ardauthorized for all hostgou can view histograms for all hostsd all services.

e |f you ardauthorized for all servicggou can view histograms for all services.

e If you are arauthenticated contagtou can view histograms for all services and hosts for
which you are a contact.

Alert Summary CGI

220

http://www.boutell.com/gd

File Name: summary.cgi

Description:
This CGlI provides some generic reports about host and service alert data, including alert totals, top
alert producers, etc.

Authorization Requirements:

e [f you ardauthorized for all hostgou can view summary information for all hoatsd all
services.

e If you ardauthorized for all servic@gou can view summary information for all services.

e |f you are arauthenticated contagtou can view summary information for all services and
hosts for which you are a contact.

221

Custom CGI Headers and Footers

Intro duction

If you're doing custom installs of Nagios for clients, you may want to have a custom header and/or
footer displayed in the output of the C[GIs. This is particularly useful for displaying support contact
information, etc. to the end user.

It is important to note that, unless the custom header and footer files are executable,itbey are
processed in any way before they are displayed. The contents of the header and footer include files are
simply read and displayed in the CGI output. That means they can only contain information a web
browser can understand (HTML, JavaScript, etc.).

If the custom header and footer files are executable, then the files are executed and their output
returned to the user, so they should output valid HTML. Using this you can run your own custom
designed CGI to insert data into the nagios display. This has been used to insert graphs from rrdtool
using ddraw and command menus into the nagios display pane. The execuable customer header and
footer files are run with the same CGI environment as the main nagios cgi, so your files can parse the
query information, authenticated user information etc. to produce appropriate output.

How Does ItWork?

You can include custom headers and footers in the output of the CGls by dropping some appropriately
named HTML files in thessi/subdirectory of the Nagios HTML directory (i.e.
lusr/local/nagios/share/sgi

Custom headers are included immediately aftekB@DY> tag in the CGI output, while custom
footers are included immediately before the closifBODY> tag.

There are two types of customer headers and footers:

® Global headers/footers These files should be nameasmmon-header.sandcommon-footer.ssi
respectively. If these files exist, they will be included in the output of all CGls.

® CGl-specific headers/footers These files should be named in the for@@&NAME-header.ssi
andCGINAME-footer.ssiwhereCGINAME s the physical name of the CGI without the .cgi
extension. For example, the header and footer files f¢r the alert summary CGI (summary.cgi)
would be namedummary-header.sandsummary-footer.ssrespectively.

You are not required to use any custom headers or footers. You can use only a global header if you
wish. You can use only CGl-specific headers and a global footer if you wish. Whatever you want.
Really.

222

Frequently Asked Questions (FAQS)

Online FAQ Database

A searchable FAQ database can now be found onljne at http://www.nagios.¢prg/fags.

223

http://www.nagios.org/faqs/

Template-Based Object Configuration

Notes
When creating and/or editing configuration files, keep the following in mind:

1. Lines that start with a '#' character are taken to be comments and are not processed
2. Directive names are case-sensitive

Intro duction

One of the benefits of using the template-based config file format is that you can create object defini-
tions that have some of their properties inherited from other object definitions. The notion of object
inheritence, along with documentation on how to do it, is desdribed here. | strongly suggest that you
familiarize yourself with object inheritence once you read over the documentation presented below, as
inheritence will make the job of creating and maintaining object definitions much easier than it other-
wise would be.

Time-SavingTricks

There are several things you can do with template-based object definitions that allow you to create

large numbers of objects using just a small number of definitions in your config file(s). One example
of such a trick is the ability to define a single service object that creates a service for multiple hosts

and/or hostgroups. These tricks are descfibed here.

Retertion Notes

It is important to point out that several directives in host and service definitions may not be picked up
by Nagios when you change them. Host and service directives that can exhibit this behavior are
marked with an asterisk](*). The reason for this behavior is due to the fact that Nagios chooses to
honor values stored in the state retention file over values found in the config files, assuming you have
[state retentidn enabled on a program-wide kaasithe value of the directive is changed during

runtime (by submitting gn external commpand).

One way to get around this problem is to disable the retention of non-status information using the
retain_nonstatus_informatiodgirective in the host and service definitions. Disabling this directive will
cause Nagios to take the initial values for these directives from your config files, rather than from the
state retention file when it (re)starts. Using this option is not recommended, as it may result in some
unexpected (from your point of view) results.

Alternatively, you can issue the approprfate external command or change the value of the host or
service directive via the web interface, so that it matches what you’ve changed it to in the config files.
This is usually done by using the extended informationf CGIl. This option takes a bit more work, but is
preferable to disabling the retention of non-status information (mentioned above).

SampleConfiguration

A few sample object configuration files are created when you run the configure script - you can find
them in thesample-config/template-objestéibdirectory of the Nagios distribution.

224

Object Types

|[Host definitions

|[Host group definitions

[Service definitions

[Service group definitions

|Contact definitions

|Contact group definitiops

[Time period definitions

[Command definitions

[Service dependency definitigns
[Service escalation definitigns

[Host dependency definitions

|[Host escalation definitiohs

|[Extended host information definitigns
|[Extended service information definitigns

Host Definition

Description:

A host definition is used to define a physical server, workstation, device, etc. that resides on your
network.

Definition Format:

Note: Directives in red are required, while those in black are optional.

225

define host{

host_name

alias

address

parents

hostgroups
check_command
max_check_attempts
check_interval
active_checks_enabled
passive_checks_enabled
check_period
obsess_over_host
check_freshness
freshness_threshold
event_handler
event_handler_enabled
low_flap_threshold
high_flap_threshold
flap_detection_enabled
process_perf data

retain_status_information

retain_nonstatus_informatioi

contact_groups
notification_interval
notification_period
notification_options
notifications_enabled

stalking_options

}

host_name

alias

address
host_names
hostgroup_names
command_name
#

#

[0/1]

[0/1]
timeperiod_name
[0/1]

[0/1]

#
command_name
[0/1]

#

#

[0/1]

[0/1]

[0/1]

[0/1]
contact_groups

#
timeperiod_name
[d,u,r,f]

[0/1]

[0,d,u]

226

Example Definition:

define host{

host_name bogus-router
alias Bogus Router #1
address 192.168.1.254
parents server-backbone

check_command
max_check_attempts
process_perf_data

retain_nonstatus_information
router-admins

contact_groups
notification_interval
notification_period
notification_options

}

Directive Descriptions:

host_name

alias:

address

check-host-alive

This directive is used to define a short name used to identify
the host. It is used in host group and service definitions to
reference this particular host. Hosts can have multiple services
(which are monitored) associated with them. When used prop-
erly, the $SHOSTNAMES$ maco will contain this short name.

This directive is used to define a longer name or description
used to identify the host. It is provided in order to allow you to
more easily identify a particular host. When used properly, the
$HOSTALIAS$[macrp will contain this alias/description.

This directive is used to define the address of the host.
Normally, this is an IP address, although it could really be
anything you want (so long as it can be used to check the
status of the host). You can use a FQDN to identify the host
instead of an IP address, but if DNS services are not availble
this could cause problems. When used properly, the
$HOSTADDRESS$ macfo will contain this addredste: If

you do not specify an address directive in a host definition, the
name of the host will be used as its address. A word of caution
about doing this, however - if DNS fails, most of your service
checks will fail because the plugins will be unable to resolve
the host name.

227

parents:

hostgroups

check_command

max_check_attempts

check_interval

This directive is used to define a comma-delimited list of short
names of the "parent” hosts for this particular host. Parent
hosts are typically routers, switches, firewalls, etc. that lie
between the monitoring host and a remote hosts. A router,
switch, etc. which is closest to the remote host is considered to
be that host’s "parent". Read the "Determining Status and
Reachability of Network Hosts" document locdted here for
more information. If this host is on the same network segment
as the host doing the monitoring (without any intermediate
routers, etc.) the host is considered to be on the local network
and will not have a parent host. Leave this value blank if the
host does not have a parent host (i.e. it is on the same segment
as the Nagios host). The order in which you specify parent
hosts has no effect on how things are monitored.

This directive is used to identify tistort name(spf thel hosi-
that the host belongs to. Multiple hostgroups should
are seperated by commas. This directive may be used as an
alternative to (or in addition to) using theemberdglirective in

definitions.

This directive is used to specify tekort nameof the

that should be used to check if the host is up or
down. Typically, this command would try and ping the host to
see if it is "alive". The command must return a status of OK

(0) or Nagios will assume the host is down. If you leave this
argument blank, the host wilbt be checked - Nagios will

always assume the host is up. This is useful if you are monitor-
ing printers or other devices that are frequently turned off. The
maximum amount of time that the notification command can
run is controlled by thie host check timeout option.

This directive is used to define the number of times that
Nagios will retry the host check command if it returns any
state other than an OK state. Setting this value to 1 will cause
Nagios to generate an alert without retrying the host check
again. Note: If you do not want to check the status of the host,
you must still set this to a minimum value of 1. To bypass the
host check, just leave tltheck_commandption blank.

NOTE: Do NOT enable regularly scheduled checks of a host
unless you absolutely need to! Host checks are already
performed on-demand when necessary, so there are few times
when regularly scheduled checks would be needed. Regularly
scheduled host checks can negatively impact performance -
see th¢ performance tuning {ips for more informatidris

directive is used to define the number of "time units" between
regularly scheduled checks of the host. Unless you've changed
the[interval_lengih directive from the default value of 60, this
number will mean minutes. More information on this value

can be found in the check scheduling documentation.

228

active_checks_enablefd}*

passive_checks_enabldd *

obsess_over_ho§tt*

check_freshnesp}*

freshness_threshold

event_handler.

event_handler_enabled}

low_flap_threshold:

high_flap_threshold:

flap_detection_enabled ¥

This directive is used to determine whether or not active
checks (either regularly scheduled or on-demand) of this host
are enabled. Values: 0 = disable active host checks, 1 = enable
active host checks.

This directive is used to determine whether or not passive
checks are enabled for this host. Values: 0 = disable passive
host checks, 1 = enable passive host checks.

This directive determines whether or not checks for the host
will be "obsessed" over using the ochp command.

This directive is used to determine whether o ness
are enabled for this host. Values: 0 = disable freshness
checks, 1 = enable freshness checks.

This directive is used to specify the freshness threshold (in
seconds) for this host. If you set this directive to a value of 0,
Nagios will determine a freshness threshold to use automati-
cally.

This directive is used to specify tekort nameof the

that should be run whenever a change in the state of
the host is detected (i.e. whenever it goes down or recovers).
Read the documentation jon event hanpllers for a more detailed
explanation of how to write scripts for handling events. The
maximum amount of time that the event handler command can
run is controlled by thie event _handler_tim¢out option.

This directive is used to determine whether or not the event
handler for this host is enabled. Values: 0 = disable host event
handler, 1 = enable host event handler.

This directive is used to specify the low state change threshold
used in flap detection for this host. More information on flap
detection can be foufd hgre. If you set this directive to a value
of 0, the program-wide value specified by the

[low host flap threshold directive will be used.

This directive is used to specify the high state change thresh-
old used in flap detection for this host. More information on
flap detection can be fouhd here. If you set this directive to a
value of 0, the program-wide value specified by the

lhigh host flap threshald directive will be used.

This directive is used to determine whether or not flap detec-
tion is enabled for this host. More information on flap detec-
tion can be found hdre. Values: 0 = disable host flap detection,
1 = enable host flap detection.

229

process_perf_datd

retain_status_information:

retain_nonstatus_information:

contact_groups

notification_interval

notification_period:

notification_options:

notifications_enabled }

This directive is used to determine whether or not the process-
ing of performance data is enabled for this host. Values: 0 =
disable performance data processing, 1 = enable performance
data processing.

This directive is used to determine whether or not
status-related information about the host is retained across
program restarts. This is only useful if you have enabled state
retention using the retain_state informgtion directive. Value: 0
= disable status information retention, 1 = enable status infor-
mation retention.

This directive is used to determine whether or not non-status
information about the host is retained across program restarts.
This is only useful if you have enabled state retention using
the|retain state informatipn directive. Value: 0 = disable
non-status information retention, 1 = enable non-status infor-
mation retention.

This is a list of theshort name®f the[contact groups that

should be notified whenever there are problems (or recoveries)
with this host. Multiple contact groups should be separated by
commas.

This directive is used to define the number of "time units" to
wait before re-notifying a contact that this servesti down

or unreachable. Unless you've changed the interval_length
directive from the default value of 60, this number will mean
minutes. If you set this value to 0, Nagios willt re-notify
contacts about problems for this host - only one problem noti-
fication will be sent out.

This directive is used to specify the short name df the]time
during which notifications of events for this host can be
sent out to contacts. If a host goes down, becomes unreach-
able, or recoveries during a time which is not covered by the
time period, no notifications will be sent out.

This directive is used to determine when notifications for the
host should be sent out. Valid options are a combination of one
or more of the followingd = send notifications on a DOWN
state,u = send notifications on an UNREACHABLE states

send notifications on recoveries (OK state), rdsend noti-
fications when the host starts and sfops flagping. If you specify
n (none) as an option, no host notifications will be sent out.
Example: If you specifyl,r in this field, notifications will only

be sent out when the host goes DOWN and when it recovers
from a DOWN state.

This directive is used to determine whether or not notifications
for this host are enabled. Values: 0 = disable host notifications,
1 = enable host notifications.

230

stalking_options This directive determines which host states "stalking" is
enabled for. Valid options are a combination of one or more of
the following:o = stalk on UP stated,= stalk on DOWN
states, and = stalk on UNREACHABLE states. More infor-
mation on state stalking can be fo ere.

Host Group Definition

Description:

A host group definition is used to group one or more hosts together for display purposgs injthe CGls.
Definition Format:

Note: Directives in red are required, while those in black are optional.

define hostgroup{

hostgroup_name hostgroup_name

alias alias
members members

Example Definition:

define hostgroup{

hostgroup_name novell-servers
alias Novell Servers
members netwarel,netware2,netware3,netware4

}

Directive Descriptions:

hostgroup_name This directive is used to define a short name used to identify the host group.

alias: This directive is used to define is a longer name or description used to iden-
tify the host group. It is provided in order to allow you to more easily iden-
tify a particular host group.

members This is a list of theshort name®f[hosth that should be included in this
group. Multiple host names should be separated by commas. This directive
may be used as an alternative to (or in addition tohdségroupgirective

in{host definitionks.

Service Definition

231

http://nagios.sourceforge.net/docs/2_0/cgis.hml

Description:

A service definition is used to identify a "service" that runs on a host. The term "service" is used very
loosely. It can mean an actual service that runs on the host (POP, SMTP, HTTP, etc.) or some other
type of metric associated with the host (response to a ping, number of logged in users, free disk space,
etc.). The different arguments to a service definition are outlined below.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define service{

host_name host_name
service_description service_description
servicegroups servicegroup_names
is_volatile [0/1]
check_command command_name
max_check_attempts #
normal_check_interval #
retry_check_interval #
active_checks_enabled [0/1]

passive_checks enabled [0/1]

check_period timeperiod_name
parallelize_check [0/1]
obsess_over_service [0/1]
check_freshness [0/1]
freshness_threshold #

event_handler command_name
event_handler_enabled [0/1]
low_flap_threshold #
high_flap_threshold #
flap_detection_enabled [0/1]
process_perf_data [0/1]

retain_status_information [0/1]

retain_nonstatus_informatior [0/1]

232

notification_interval
notification_period
notification_options
notifications_enabled
contact_groups

stalking_options

}

Example Definition:

define service{
host_name
service_description
check_command
max_check_attempts 5
normal_check_interval 5
retry_check_interval 3
check_period 24x7
notification_interval 30
notification_period 24x7
notification_options w,c,r
contact_groups linux-admins

}

linux-server

Directive Descriptions:

host_name

service_description;

servicegroups

is_volatile:

#
timeperiod_name
[w,u,c,r,f]

[0/1]
contact_groups

[o,w,u,c]

check-disk-sdal
check-disk!/dev/sdal

This directive is used to specify thkort nameof the[hogt that
the service "runs" on or is associated with.

This directive is used to define the description of the service,
which may contain spaces, dashes, and colons (semicolons,
apostrophes, and quotation marks should be avoided). No two
services associated with the same host can have the same
description. Services are uniquely identified with their
host_namendservice_descriptiodirectives.

This directive is used to identify tislort name(spf the
[servicegroup(}) that the service belongs to. Multiple service-
groups should are seperated by commas. This directive may be
used as an alternative to using themberslirective in

servicegroup definitions.

This directive is used to denote whether the service is
"volatile". Services are normallyot volatile. More informa-

tion on volatile service and how they differ from normal
services can be foufd hkre. Value: 0 = service is not volatile, 1
= service is volatile.

233

check_command

max_check_attempts

normal_check_interval:

retry_check_interval:

active_checks_enablefd}*

passive_checks_enabldd *

check_period

parallelize_check

This directive is used to specify tekort nameof the

that Nagios will run in order to check the status of
the service. The maximum amount of time that the service
check command can run is controlled by the

[service_check timedut option.

This directive is used to define the number of times that
Nagios will retry the service check command if it returns any
state other than an OK state. Setting this value to 1 will cause
Nagios to generate an alert without retrying the service check
again.

This directive is used to define the number of "time units" to
wait before scheduling the next "regular" check of the service.
"Regular" checks are those that occur when the service is in an
OK state or when the service is in a non-OK state, but has
already been recheckethx_attemptsnumber of times.

Unless you've changed the interval lemgth directive from the
default value of 60, this number will mean minutes. More
information on this value can be found inthe check scheduling
documentation.

This directive is used to define the number of "time units" to
wait before scheduling a re-check of the service. Services are
rescheduled at the retry interval when the have changed to a
non-OK state. Once the service has been retried
max_attemptstimes without a change in its status, it will

revert to being scheduled at its "normal” rate as defined by the
check_interval value. Unless you've changed fhe irter-
directive from the default value of 60, this number
will mean minutes. More information on this value can be
found in the check scheduling documentation.

This directive is used to determine whether or not active
checks of this service are enabled. Values: 0 = disable active
service checks, 1 = enable active service checks.

This directive is used to determine whether or not passive
checks of this service are enabled. Values: 0 = disable passive
service checks, 1 = enable passive service checks.

This directive is used to specify the short name df the]time
during which active checks of this service can be made.

This directive is used to determine whether or not the service
check can be parallelized. By default, all service checks are
parallelized. Disabling parallel checks of services can result in
serious performance problems. More information on service
check parallelization can be found Here. Values: 0 = service
check cannot be parallelized (use with caution!), 1 = service
check can be parallelized.

234

obsess_over_servidg *

check_freshnesp}*

freshness_threshold

event_handler_enabled

low_flap_threshold:

high_flap_threshold:

flap_detection_enabled ¥

process_perf_datd F

retain_status_information:

retain_nonstatus_information:

This directive determines whether or not checks for the service
will be "obsessed" over using the ocsp_command.

This directive is used to determine whether o ness
are enabled for this service. Values: 0 = disable fresh-
ness checks, 1 = enable freshness checks.

This directive is used to specify the freshness threshold (in
seconds) for this service. If you set this directive to a value of
0, Nagios will determine a freshness threshold to use automati-
cally.

This directive is used to determine whether or not the event
handler for this service is enabled. Values: 0 = disable service
event handler, 1 = enable service event handler.

This directive is used to specify the low state change threshold
used in flap detection for this service. More information on

flap detection can be foupd here. If you set this directive to a
value of 0, the program-wide value specified by the

[low service flap threshqdld directive will be used.

This directive is used to specify the high state change thresh-
old used in flap detection for this service. More information on
flap detection can be fouhd here. If you set this directive to a
value of 0, the program-wide value specified by the

lhigh service flap threshgld directive will be used.

This directive is used to determine whether or not flap detec-
tion is enabled for this service. More information on flap
detection can be foufid hkre. Values: 0 = disable service flap
detection, 1 = enable service flap detection.

This directive is used to determine whether or not the process-
ing of performance data is enabled for this service. Values: 0 =
disable performance data processing, 1 = enable performance
data processing.

This directive is used to determine whether or not
status-related information about the service is retained across
program restarts. This is only useful if you have enabled state
retention using the retain_state informgtion directive. Value: 0
= disable status information retention, 1 = enable status infor-
mation retention.

This directive is used to determine whether or not non-status
information about the service is retained across program
restarts. This is only useful if you have enabled state retention
using the retain_state information directive. Value: 0 = disable
non-status information retention, 1 = enable non-status infor-
mation retention.

235

notification_interval : This directive is used to define the number of "time units" to
wait before re-notifying a contact that this servicsti in a
non-OK state. Unless you've changed[the interval Iéngth
directive from the default value of 60, this number will mean
minutes. If you set this value to 0, Nagios wilit re-notify
contacts about problems for this service - only one problem
notification will be sent out.

notification_period: This directive is used to specify the short name df the]time
during which notifications of events for this service can
be sent out to contacts. No service notifications will be sent
out during times which is not covered by the time period.

notification_options: This directive is used to determine when notifications for the
service should be sent out. Valid options are a combination of
one or more of the followingy = send notifications on a
WARNING stateu = send notifications on an UNKNOWN
state,c = send notifications on a CRITICAL states send
notifications on recoveries (OK state), dnelsend notifica-
tions when the service starts and sfops flapping. If you specify
n (none) as an option, no service notifications will be sent out.
Example: If you specify,r in this field, notifications will
only be sent out when the service goes into a WARNING state
and when it recovers from a WARNING state.

notifications_enabled } This directive is used to determine whether or not notifications
for this service are enabled. Values: 0 = disable service notifi-
cations, 1 = enable service notifications.

contact_groups This is a list of theshort name®f the[contact groups that
should be notified whenever there are problems (or recoveries)

with this service. Multiple contact groups should be separated
by commas.

stalking_options This directive determines which service states "stalking" is
enabled for. Valid options are a combination of one or more of
the following:o = stalk on OK statesy = stalk on WARNING
statesy = stalk on UNKNOWN states, amd= stalk on CRIT-
ICAL states. More information on state stalking can be found
herg.

Service Group Definition

Description:

A service group definition is used to group one or more services together for display purposes in the
CGlg.

Definition Format:

236

http://nagios.sourceforge.net/docs/2_0/cgis.hml

Note: Directives in red are required, while those in black are optional.

define servicegroup{

servicegroup_name servicegroup_name

alias alias
members members

Example Definition:

define servicegroup{
servicegroup_name dbservices
alias Database Services
members ms1,SQL Server,ms1,SQL Server Agent,ms1,SQL DTC
}

Directive Descriptions:

servicegroup_name This directive is used to define a short name used to identify the service
group.

alias: This directive is used to define is a longer name or description used to
identify the service group. It is provided in order to allow you to more
easily identify a particular service group.

members This is a list of thelescriptionsof[servicels (and the names of their corre-
sponding hosts) that should be included in this group. Host and service
names should be separated by commas. This directive may be used as an
alternative to theervicegroupslirective i service definitiops. The
format of the member directive is as follows (note that a host name must
precede a service name/description):

members=<hostl>,<servicel><host2>,<service2>,...,dhgservice>

Contact Definition

Description:

A contact definition is used to identify someone who should be contacted in the event of a problem on
your network. The different arguments to a contact definition are described below.

Definition Format:

Note: Directives in red are required, while those in black are optional.

237

define contact{

contact_name contact_name

alias alias

contactgroups contactgroup_names
host_notification_period timeperiod_name
service_notification_period timeperiod_name
host_notification_options [d,u,r,f,n]

service_notification_options [w,u,c,r,f,n]
host_notification_commands command_name

service_notification_command command_name

email email_address

pager pager_number or pager_email_gateway
address additional_contact_address

}

Example Definition:

define contact{
contact_name jdoe
alias John Doe
service_notification_period 24x7
host_natification_period 24x7
service_notification_options w,u,c,r
host_natification_options d,ur
service_notification_commands notify-by-email
host_natification_commands host-notify-by-email

email jdoe@localhost.localdomain

pager 555-5555@pagergateway.localhost.localdomain
addressl1 XXXXX.XYYy@icg.com

address2 555-555-5555

}

Directive Descriptions:

contact_name This directive is used to define a short name used to identify

the contact. It is referenced[in contact gtoup definitions.
Under the right circumstances, the SCONTACTNAMES$

macr@ will contain this value.

alias: This directive is used to define a longer name or description
for the contact. Under the rights circumstances, the
$CONTACTALIAS$[macrp will contain this value.

238

contactgroups

host_natification_period:

service_notification_period

host_natification_commands

host_notification_options

service_natification_options

This directive is used to identify tisdort name(spf the
[contactgroup($) that the contact belongs to. Multiple contact-
groups should are seperated by commas. This directive may
be used as an alternative to (or in addition to) using the

memberslirective ir contactgrolip definitions.

This directive is used to specify the short name df the]time
during which the contact can be notified about host
problems or recoveries. You can think of this as an "on call"
time for host notifications for the contact. Read the docu-
mentation ol time periods for more information on how this
works and potential problems that may result from improper
use.

This directive is used to specify the short name df the]time
during which the contact can be notified about service
problems or recoveries. You can think of this as an "on call"
time for service notifications for the contact. Read the docu-
mentation ofi time periofds for more information on how this
works and potential problems that may result from improper
use.

This directive is used to define a list of #ieort name®f
thelcommands used to notify the contact bbstproblem or
recovery. Multiple notification commands should be sepa-
rated by commas. All notification commands are executed
when the contact needs to be notified. The maximum amount
of time that a notification command can run is controlled by
the[notification_timeolit option.

This directive is used to define the host states for which noti-
fications can be sent out to this contact. Valid options are a
combination of one or more of the followind)= notify on
DOWN host states) = notify on UNREACHABLE host

statesy = notify on host recoveries (UP states), ard

notify when the host starts and stpps flapping. If you specify
n (none) as an option, the contact will not receive any type of
host notifications.

This directive is used to define the service states for which
notifications can be sent out to this contact. Valid options are
a combination of one or more of the followivg= notify on
WARNING service states} = notify on UNKNOWN

service states, = notify on CRITICAL service states,=

notify on service recoveries (OK states), armdnotify when

the servuce starts and stpps flapping. If you spec{fyone)

as an option, the contact will not receive any type of service
notifications.

239

service_natification_commands This directive is used to define a list of gteort nameof
the[commands used to notify the contact séeviceproblem
or recovery. Multiple notification commands should be sepa-
rated by commas. All notification commands are executed
when the contact needs to be notified. The maximum amount
of time that a notification command can run is controlled by
the|notification_timeouyit option.

email: This directive is used to define an email address for the
contact. Depending on how you configure your notification
commands, it can be used to send out an alert email to the
contact. Under the right circumstances, the
$CONTACTEMAIL$[macrd will contain this value.

pager. This directive is used to define a pager number for the
contact. It can also be an email address to a pager gateway
(i.e. pagejoe@pagenet.com). Depending on how you config-
ure your natification commands, it can be used to send out an
alert page to the contact. Under the right circumstances, the
$CONTACTPAGER$ macto will contain this value.

addressc: Address directives are used to define additional "addresses"
for the contact. These addresses can be anything - cell phone
numbers, instant messaging addresses, etc. Depending on
how you configure your notification commands, they can be
used to send out an alert o the contact. Up to six addresses
can be defined using these directivaddressthrough
addressf The SCONTACTADDRESS[macrd will
contain this value.

Contact Group Definition

Description:

A contact group definition is used to group one or rhore cohtacts together for the purpose of sending
out alert/recovery natifications. When a host or service has a problem or recovers, Nagios will find the
appropriate contact groups to send notifications to, and notify all contacts in those contact groups. This
may sound complex, but for most people it doesn’t have to be. It does, however, allow for flexibility in
determining who gets notified for particular events. The different arguments to a contact group defini-
tion are outlined below.

Definition Format:

Note: Directives in red are required, while those in black are optional.

240

define contactgroup{

contactgroup_name contactgroup_name

alias alias
members members
}

Example Definition:

define contactgroup{

contactgroup_name novell-admins
alias Novell Administrators
members jdoe,rtobert,tzach

}

Directive Descriptions:

contactgroup_name This directive is a short name used to identify the contact group.

alias: This directive is used to define a longer name or description used to iden-
tify the contact group.

members This directive is used to define a list of #teort name®f[contacts that
should be included in this group. Multiple contact names should be sepa-
rated by commas. This directive may be used as an alternative to (or in
addition to) using theontactgroupslirective i contaft definitions.

Time Period Definition

Description:

A time period is a list of times during various days that are considered to be "valid" times for notifica-
tions and service checks. It consists one or more time periods for each day of the week that "rotate"
once the week has come to an end. Exceptions to the normal weekly time range rotations are not
suported.

Definition Format:

Note: Directives in red are required, while those in black are optional.

241

define timeperiod{

timeperiod_name timeperiod_name

alias
sunday
monday
tuesday
wednesday
thursday
friday
saturday

}

Example Definition:

define timeperiod{
timeperiod_name

alias

timeranges
timeranges
timeranges
timeranges
timeranges
timeranges

timeranges

nonworkhours

alias Non-Work Hours

sunday 00:00-24:00

monday 00:00-09:00,17:00-24:00
tuesday 00:00-09:00,17:00-24:00
wednesday 00:00-09:00,17:00-24:00
thursday 00:00-09:00,17:00-24:00
friday 00:00-09:00,17:00-24:00
saturday 00:00-24:00

}

Directive Descriptions:

timeperiod_name

alias

someday:

Command Definition

This directives is the short name used to identify the time period.

This directive is a longer name or description used to identify the time
period.

The sundaythroughsaturdaydirectives are comma-delimited lists of time
ranges that are "valid" times for a particular day of the week. Notice that
there are seven different days for which you can define time ranges (Sunday
through Saturday). Each time range is in the forirdldfMM-HH:MM |

where hours are specified on a 24 hour clock. For exa®pl&5-24:00

means 12:15am in the morning for this day until 12:20am midnight (a 23
hour, 45 minute total time range). If you wish to exclude an entire day from
the timeperiod, simply do not include it in the timeperiod definition.

242

Description:

A command definition is just that. It defines a command. Commands that can be defined include
service checks, service notifications, service event handlers, host checks, host notifications, and host
event handlers. Command definitions can corfitain mlacros, but you must make sure that you include
only those macros that are "valid" for the circumstances when the command will be used. More infor-
mation on what macros are available and when they are "valid" can bd found here. The different argu-
ments to a command definition are outlined below.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define command{

command_name command_name

command_line command_line

}

Example Definition:

define command{

command_name check_pop
command_line /usr/local/nagios/libexec/check_pop -H SHOSTADDRESS$

}

Directive Descriptions:

command_name

command_line

This directive is the short name used to identify the command. It is refer-
enced i contagt, host, and seryice definitions (in notification, check, and
event handler directives), among other places.

This directive is used to define what is actually executed by Nagios when the
command is used for service or host checks, notifications, or event handlers.
Before the command line is executed, all vialid mgcros are replaced with their
respective values. See the documentation on macros for determining when
you can use different macros. Note that the command lima&t 8irrounded

in quotes. Also, if you want to pass a dollar sign ($) on the command line,
you have to escape it with another dollar sign.

If you want to pass arguments to commands during runtime, you can use
[BARGN$ macrop in theommand_linalirective of the command definition

and then seperate individual arguments from the command name (and from
each other) using bang (!) characters in the object definition directive (host
check command, service event handler command, etc) that references the
command. More information on how arguments in command definitions are
processed during runtime can be found in the documentat{on on acros.

243

Service Dependency Definition

Description:

Service dependencies are an advanced feature of Nagios that allow you to suppress natifications and
active checks of services based on the status of one or more other services. Service dependencies are
optional and are mainly targeted at advanced users who have complicated monitoring setups. More
information on how service dependencies work (read this!) can be[fouhd here.

Definition Format:

Note: Directives in red are required, while those in black are optional. However, you must supply at
least one type of criteria for the definition to be of much use.

define servicedependency{
dependent_host_name host_name

dependent_service_descriptic service_description

host_name host_name
service_description service_description
inherits_parent [0/1]
execution_failure_criteria [o,w,u,c,p,n]
notification_failure_criteria [o,w,u,c,p,n]

}

Example Definition:

define servicedependency{

host_name Www1
service_description Apache Web Server
dependent_host_name Www1

dependent_service_description Main Web Site
execution_failure_criteria n
notification_failure_criteria w,u,c

}

Directive Descriptions:

244

dependent_host

dependent_service_description

host_name

service_description

inherits_parent:

execution_failure_criteria:

notification_failure_criteria :

This directive is used to identify tlsbort nameof the[hogt
that thedependenservice "runs" on or is associated with.

This directive is used to identify tlescriptionof thedepen-

denfservicé.

This directive is used to identify tsort nameof the[hogt
that the servicéhat is being depended upaiso referred to
as the master service) "runs" on or is associated with.

This directive is used to identify tiescriptionof the[servide
that is being depended up¢eiso referred to as the master
service).

This directive indicates whether or not the dependency inher-
its dependencies of the servibat is being depended upon
(also referred to as the master service). In other words, if the
master service is dependent upon other services and any one
of those dependencies fail, this dependency will also falil.

This directive is used to specify the criteria that determine
when the dependent service shoutd be actively checked. If
themasterservice is in one of the failure states we specify,
thedependenservice will not be actively checked. Valid
options are a combination of one or more of the following
(multiple options are seperated with commas):fail on an

OK statew = fail on a WARNING statey = fail on an
UNKNOWN state ¢ = fail on a CRITICAL state, ang = fail

on a pending state (e.g. the service has not yet been checked).
If you specifyn (none) as an option, the execution depen-
dency will never fail and checks of the dependent service will
always be actively checked (if other conditions allow for it to
be). Example: If you specify,c,uin this field, thedependent
service will not be actively checked if theasterservice is in
either an OK, a CRITICAL, or an UNKNOWN state.

This directive is used to define the criteria that determine
when notifications for the dependent service shoolbe

sent out. If thenmasterservice is in one of the failure states we
specify, notifications for thdependenservice will not be

sent to contacts. Valid options are a combination of one or
more of the followingp = fail on an OK statey = fail on a
WARNING stateu = fail on an UNKNOWN stateg; = falil

on a CRITICAL state, ang = fail on a pending state (e.g. the
service has not yet been checked). If you spec{fyone) as

an option, the notification dependency will never fail and
notifications for the dependent service will always be sent
out. Example: If you specifw in this field, the notifications
for thedependenservice will not be sent out if theaster
service is in a WARNING state.

245

Service Escalation Definition

Description:

Service escalations acempletely optionadnd are used to escalate notifications for a particular
service. More information on how notification escalations work can be fourld here.

Definition Format:
Note: Directives in red are required, while those in black are optional.
define serviceescalation{

host_name host_name

service_description service_description

contact_groups contactgroup_name
first_notification #
last_notification #

notification_interval #
escalation_period timeperiod_name
escalation_options [w,u,c,r]

}

Example Definition:

define serviceescalation{
host_name nt-3
service_description Processor Load
first_notification 4
last_notification 0
notification_interval 30
contact_groups all-nt-admins,themanagers

}

Directive Descriptions:

246

host_name

service_description

first_notification :

last_notification:

contact_groups

notification_interval :

escalation_period

escalation_options

This directive is used to identify tstort nameof the[hogt that the
the escalation should apply to is associated with.

This directive is used to identify tliescriptionof the servide the escala-
tion should apply to.

This directive is a number that identifies first notification for which
this escalation is effective. For instance, if you set this value to 3, this
escalation will only be used if the service is in a non-OK state long
enough for a third notification to go out.

This directive is a number that identifies thst notification for which

this escalation is effective. For instance, if you set this value to 5, this
escalation will not be used if more than five notifications are sent out for
the service. Setting this value to 0 means to keep using this escalation
entry forever (no matter how many notifications go out).

This directive is used to identify tistort nameof the] contact grodip that
should be notified when the service notification is escalated. Multiple

contact groups should be separated by commas.

This directive is used to determine the interval at which notifications
should be made while this escalation is valid. If you specify a value of 0
for the interval, Nagios will send the first notification when this escala-
tion definition is valid, but will then prevent any more problem notifica-
tions from being sent out for the host. Notifications are sent out again
until the host recovers. This is useful if you want to stop having notifica-
tions sent out after a certain amount of time. Note: If multiple escalation
entries for a host overlap for one or more notification ranges, the small-
est notification interval from all escalation entries is used.

This directive is used to specify the short name of the time period during
which this escalation is valid. If this directive is not specified, the escala-
tion is considered to be valid during all times.

This directive is used to define the criteria that determine when this
service escalation is used. The escalation is used only if the service is in
one of the states specified in this directive. If this directive is not speci-
fied in a service escalation, the escalation is considered to be valid
during all service states. Valid options are a combination of one or more
of the following:r = escalate on an OK (recovery) state; escalate on

a WARNING statey = escalate on an UNKNOWN state, and esca-

late on a CRITICAL state. Example: If you speaifyin this field, the
escalation will only be used if the service is in a WARNING state.

Host Dependency Definition

Description:

247

Host dependencies are an advanced feature of Nagios that allow you to suppress notifications for hosts
based on the status of one or more other hosts. Host dependencies are optional and are mainly targeted
at advanced users who have complicated monitoring setups. More information on how host dependen-
cies work (read this!) can be found Here.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define hostdependency{

dependent_host_name host_name
host_name host_name
inherits_parent [0/1]

execution_failure_criteria [0,d,u,p,n]
notification_failure_criteria [0,d,u,p,n]

}

Example Definition:

define hostdependency{
host_name WWWwW1
dependent_host_name DBASE1
notification_failure_criteria d,u

}

Directive Descriptions:

248

dependent_host This directive is used to identify tislort nameof thedependent

hos}.
host_name This directive is used to identify tistort nameof thel hogthat

is being depended updalso referred to as the master host).

inherits_parent: This directive indicates whether or not the dependency inherits
dependencies of the hdbat is being depended up¢aiso
referred to as the master host). In other words, if the master host
is dependent upon other hosts and any one of those dependencies
fail, this dependency will also fail.

execution_failure_criteria: This directive is used to specify the criteria that determine when
the dependent host shouldt be actively checked. If theaster
host is in one of the failure states we specify dbjgendenhost
will not be actively checked. Valid options are a combination of
one or more of the following (multiple options are seperated with
commas)o = fail on an UP statel = fail on a DOWN statey =
fail on an UNREACHABLE state, arpl= fail on a pending
state (e.g. the host has not yet been checked). If you specify
(none) as an option, the execution dependency will never fail and
the dependent host will always be actively checked (if other
conditions allow for it to be). Example: If you speaifyl in this
field, thedependenhost will not be actively checked if the
masterhost is in either an UNREACHABLE or DOWN state.

notification_failure_criteria: This directive is used to define the criteria that determine when
notifications for the dependent host shooutd be sent out. If the
masterhost is in one of the failure states we specify, notifica-
tions for thedependenhost will not be sent to contacts. Valid
options are a combination of one or more of the following:
fail on an UP statea] = fail on a DOWN statay = fail on an
UNREACHABLE state, ang = fail on a pending state (e.g. the
host has not yet been checked). If you spetifgone) as an
option, the notification dependency will never fail and notifica-
tions for the dependent host will always be sent out. Example: If
you specifyd in this field, the notifications for thdependent
host will not be sent out if thmasterhost is in a DOWN state.

Host Escalation Definition

Description:

Host escalations ammpletely optionadnd are used to escalate notifications for a particular host.
More information on how notification escalations work can be fpund here.

Definition Format:

Note: Directives in red are required, while those in black are optional.

249

define hostescalation{
host_name host_name

hostgroup_name hostgroup_name

contact_groups contactgroup_name
first_notification #
last_notification #

notification_interval #
escalation_period timeperiod_name
escalation_options [d,u,r]

}

Example Definition:

define hostescalation{
host_name router-34
first_notification 5
last_notification 8
notification_interval 60
contact_groups all-router-admins

}

Directive Descriptions:

250

host_name

hostgroup_name

first_notification :

last_notification:

contact_groups

notification_interval :

escalation_period

escalation_options

This directive is used to identify tistort nameof the[hogt that the esca-
lation should apply to.

This directive is used to identify tistort name(spf thel hostgroup(s)

that the escalation should apply to. Multiple hostgroups should are seper-
ated by commas. If this is used, the escalation will apply to all hosts that
are members of the specified hostgroup(s).

This directive is a number that identifies first notification for which
this escalation is effective. For instance, if you set this value to 3, this
escalation will only be used if the host is down or unreachable long
enough for a third notification to go out.

This directive is a number that identifies thst notification for which

this escalation is effective. For instance, if you set this value to 5, this
escalation will not be used if more than five notifications are sent out for
the host. Setting this value to 0 means to keep using this escalation entry
forever (no matter how many notifications go out).

This directive is used to identify tistort nameof the] contact grodip that
should be notified when the host notification is escalated. Multiple

contact groups should be separated by commas.

This directive is used to determine the interval at which notifications
should be made while this escalation is valid. If you specify a value of 0
for the interval, Nagios will send the first notification when this escala-
tion definition is valid, but will then prevent any more problem notifica-
tions from being sent out for the host. Notifications are sent out again
until the host recovers. This is useful if you want to stop having notifica-
tions sent out after a certain amount of time. Note: If multiple escalation
entries for a host overlap for one or more notification ranges, the small-
est notification interval from all escalation entries is used.

This directive is used to specify the short name of the time period during
which this escalation is valid. If this directive is not specified, the escala-
tion is considered to be valid during all times.

This directive is used to define the criteria that determine when this host
escalation is used. The escalation is used only if the host is in one of the
states specified in this directive. If this directive is not specified in a host
escalation, the escalation is considered to be valid during all host states.
Valid options are a combination of one or more of the followirng:

escalate on an UP (recovery) stalte, escalate on a DOWN state, and

= escalate on an UNREACHABLE state. Example: If you spetify

this field, the escalation will only be used if the host is in a DOWN state.

Extended Host Information Definition

Description:

251

Extended host information entries are basically used to make the output flom the status, $tatusmap,
[statuswil, and extinfo CGls look pretty. They have no effect on monitoring and are completely
optional.

Definition Format:

Note: Variables in red are required, while those in black are optional. However, you need to supply at
least one optional variable in each definition for it to be of much use.

define hostextinfo{

host_name host_name
notes note_string
notes_url url
action_url url
icon_image image_file

icon_image_alt alt_string
vrml_image image_file

statusmap_image image_file

2d_coords x_coord,y_coord
3d_coords x_coord,y_coord,z_coord
}

Example Definition:

define hostextinfo{
host_name netwarel
notes This is the primary Netware file server
notes_url http://webserver.localhost.localdomain/hostinfo.pl?host=netwarel
icon_image novell40.png
icon_image_alt IntranetWare 4.11
vrml_image novell40.png
statusmap_image novell40.gd2
2d_coords 100,250
3d_coords 100.0,50.0,75.0

}

Variable Descriptions:

host_name This variable is used to identify tisbort nameof the[hogt which the data is
associated with.

notes This directive is used to define an optional string of notes pertaining to the
host. If you specify a note here, you will see the it i) the extended informa-
CGlI (when you are viewing information about the specified host).

252

notes_url:

action_url:

icon_image

icon_image_alt

vrml_image:

statusmap_image

This variable is used to define an optional URL that can be used to provide
more information about the host. If you specify an URL, you will see a link
that says "Extra Host Notes" in fhe extended informption CGI (when you
are viewing information about the specified host). Any valid URL can be
used. If you plan on using relative paths, the base path will the the same as
what is used to access the CGls (cgi-bin/nagios). This can be very

useful if you want to make detailed information on the host, emergency
contact methods, etc. available to other support staff.

This directive is used to define an optional URL that can be used to provide
more actions to be performed on the host. If you specify an URL, you will
see a link that says "Extra Host Actions" in|the extended information CGI
(when you are viewing information about the specified host). Any valid

URL can be used. If you plan on using relative paths, the base path will the
the same as what is used to access the CGl&(jiebin/nagios).

This variable is used to define the name of a GIF, PNG, or JPG image that
should be associated with this host. This image will be displayed in the
[statug anfl extended information CGls. The image will look best if it is
40x40 pixels in size. Images for hosts are assumed to belogtw subdi-
rectory in your HTML images directory (i.e.
/usr/local/nagios/share/images/logos

This variable is used to define an optional string that is used in the ALT tag
of the image specified by tkécon_image>argument. The ALT tag is used
in thel statug, extended information @and statugmap CGls.

This variable is used to define the name of a GIF, PNG, or JPG image that
should be associated with this host. This image will be used as the texture
map for the specified host in the statubwrl CGI. Unlike the image you use
for the<icon_image>variable, this one should probalmigt have any trans-
parency. If it does, the host object will look a bit wierd. Images for hosts are
assumed to be in thegos/subdirectory in your HTML images directory
(i.e./usr/local/nagios/share/images/logos

This variable is used to define the name of an image that should be associ-
ated with this host in te statushap CGlI. You can specify a JPEG, PNG,
and GIF image if you want, although | would strongly suggest using a GD2
format image, as other image formats will result in a lot of wasted CPU
time when the statusmap image is generated. GD2 images can be created
from PNG images by using timgtogd2 utility supplied with Thomas
Boutell's[gd library. The GD2 images should be creatathtompressed
format in order to minimize CPU load when the statusmap CGIl is generat-
ing the network map image. The image will look best if it is 40x40 pixels in
size. You can leave these option blank if you are not using the statusmap
CGl. Images for hosts are assumed to be itopes/subdirectory in your
HTML images directory (i.€usr/local/nagios/share/images/logos

253

http://www.boutell.com/gd/

2d_coords This variable is used to define coordinates to use when drawing the host in
the[statusmap CGI. Coordinates should be given in positive integers, as the
correspond to physical pixels in the generated image. The origin for
drawing (0,0) is in the upper left hand corner of the image and extends in
the positive x direction (to the right) along the top of the image and in the
positive y direction (down) along the left hand side of the image. For refer-
ence, the size of the icons drawn is usually about 40x40 pixels (text takes a
little extra space). The coordinates you specify here are for the upper left
hand corner of the host icon that is drawn. Note: Don’t worry about what
the maximum x and y coordinates that you can use are. The CGI will auto-
matically calculate the maximum dimensions of the image it creates based
on the largest x and y coordinates you specify.

3d_coords This variable is used to define coordinates to use when drawing the host in
the[statusw}l CGI. Coordinates can be positive or negative real numbers.
The origin for drawing is (0.0,0.0,0.0). For reference, the size of the host
cubes drawn is 0.5 units on each side (text takes a little more space). The
coordinates you specify here are used as the center of the host cube.

Extended Service Information Definition

Description:

Extended service information entries are basically used to make the output ffom the status ahd extinfo
CGls look pretty. They have no effect on monitoring and are completely optional.

Definition Format:

Note: Variables in red are required, while those in black are optional. However, you need to supply at
least one optional variable in each definition for it to be of much use.

define serviceextinfo{
host_name host_name

service_description service_description

notes note_string
notes_url url
action_url url
icon_image image_file
icon_image_alt alt_string

}

Example Definition:

254

define serviceextinfo{
host_name linux2

service_description Log Anomalies

notes Security-related log anomalies on secondary Linux server

notes_url http://webserver.localhost.localdomain/serviceinfo.pl?host=linux2&service=Log+Anomalies
icon_image security.png

icon_image_alt Security-Related Alerts

}

Variable Descriptions:

host_name

service_description

notes

notes_url

action_url:

icon_image

icon_image_alt

This directive is used to identify tlsdort nameof the host that the
service is associated with.

This directive is description of the senjice which the data is associated
with.

This directive is used to define an optional string of notes pertaining to the
service. If you specify a note here, you will see the it i nded

CGI (when you are viewing information about the specified
service).

This directive is used to define an optional URL that can be used to
provide more information about the service. If you specify an URL, you
will see a link that says "Extra Service Notes" in[the extended information
CGlI (when you are viewing information about the specified service). Any
valid URL can be used. If you plan on using relative paths, the base path
will the the same as what is used to access the CGl&¢idain/nagios).

This can be very useful if you want to make detailed information on the
service, emergency contact methods, etc. available to other support staff.

This directive is used to define an optional URL that can be used to
provide more actions to be performed on the service. If you specify an
URL, you will see a link that says "Extra Service Actions" i the extehded
CGI (when you are viewing information about the specified
service). Any valid URL can be used. If you plan on using relative paths,
the base path will the the same as what is used to access the CGils (i.e.
/cgi-bin/nagios).

This variable is used to define the name of a GIF, PNG, or JPG image that
should be associated with this host. This image will be displayed in the
[statug anf extended informafion CGls. The image will look best if it is
40x40 pixels in size. Images for hosts are assumed to belogtisd
subdirectory in your HTML images directory (i.e.
lusr/local/nagios/share/images/logos

This variable is used to define an optional string that is used in the ALT
tag of the image specified by thkeeon_image>argument. The ALT tag
is used in thg statlls, extended information[and statlismap CGls.

255

External Command File Permissions

Notes

These instructions assume that you've installed Nagios on a dedicated monitoring/admin box that
doesn’t contain normal user accounts (i.e. isn’t a public machine). If you've installed Nagios on a
public/multi-user machine, | would suggest setting more restrictive permissions on the external
command file and using something lfke CGIWrap to run the CGls as a specific user. Failing to do so
may allow normal users to control Nagios through the external command file! I'm guessing you don’t
want that. More information on securing Nagios can be fpundl here.

Intro duction

One of the most common problems people have seems to be with setting proper permissions for the
external command file. You need to set the proper permission dustiilecal/nagios/var/rwdirec-

tory (or whatever the path portion of {he_ command file directive in[your main configuratjon file is set
to). I'll show you how to do this. Note: You must tm®t in order to do some of these steps...

Users andGroups

First, find the user that your web server process is running as. On many systems this is the user
nobody although it will vary depending on what OS/distribution you are running. You'll also need to
know what user Nagios is effectively running as - this is specified with the nagigs_user variable in the
main config file.

Next we're going to create a hew group whose members include the user the web server is running as
and the user Nagios is running as. Let’s say we call this new gragmtmd (you can name it

differently if you wish). On RedHat Linux you can use the following command to add a new group
(other systems may differ):

{/usr/shin/groupadd nagiocmd

Next, add the web server usapbodyor apache etc) and the Nagios use&ragio9 to the newly
created group with the following commands:

{usr/sbin/usermod -G nagiocmd nagios
{usr/sbin/usermod -G nagiocmd nobody

Creating the directory

Next, create the directory where the command file should be stored. By default, this is
/usr/local/nagios/var/rwalthough it can be changed by modifying the path specified in

th¢command_file directory.

mkdir /usr/local/nagios/var/rw

Setting directory permissions

Next, change the ownership of the directory that will be used to hold the command file...

256

http://cgiwrap.unixtools.org/

chown nagios.nagiocmd /usr/local/nagios/var/rw

Make sure the Nagios user has full permissions on the directory...
chmod u+rwx /usr/local/nagios/var/rw

Make sure the group we created has full permissions on the directory.
chmod g+rwx /usr/local/nagios/var/rw

In order to force newly created files in the directory to inherit the group permissions from the direc-
tory, we need to enable the group sticky bit on the directory...

chmod g+s /usr/local/nagios/var/rw

Verifying the permissions

Check the permissions on the rw/ subdirectory by rundgal /usr/local/nagios/vat. You should
see something similiar to the following:

drwxrws--- 2 nagios nagiocmd 1024 Aug 11 16:30 rw

Note that the useragiosis the owner of the directory and the grawgmiocmdis the group owner of
the directory. Thaagiosuser haswx permissions and groumgiocmdhasrw permissions on the
directory. Also, note that the group sticky bit is enabled. That's what we want...

Restart your webserver

Once you set the proper permission on the directory containing the external command file, make sure
to restart your web server. If you fail to do this, Apache will not be able to write to the external
command file, even though the user it runs as is a member of the nagiocmd group.

Additional notes...

If you supplied the-with-command-grp=somegroup option when running the configure script, you
can create the directory to hold the command file and set the proper permissions automatically by
running make install-commandmodé

257

Extended Information Configuration

What is ExtendedInfor mation?

Extended information consists gtional definitions for hosts and services that is used by the CGils in
the following ways:

e to provide URLSs to additional information about the host or service
® to add pretty icons to the hosts and services displayed in the web interface
® to draw hosts in tHe statusmap and statliswrl CGls at user-defined 2-D and 3-D coordinates

Where is ExtendedInfor mation Defined?

Extended information definitions are stored in object configuration files along with definitions for

hosts, services, contacts, etc. You can use templates to define entries for multiple hosts and services
quickly and easily.

258

	About Nagios®
	What's new in Version 2.0
	Advice for Beginners
	Installation
	Installing Nagios
	Setting up the Web Interface

	Configuration
	Configuring Nagios
	Main Configuration File Options
	Object Definitions
	CGI Configuration File Options
	Authorization for the CGIs

	Running Nagios
	Verifying your Nagios Configuration
	Starting Nagios
	Stopping and Restarting Nagios

	Nagios Plugins
	Nagios Addons
	Theory of Operation
	Determining Status and Reachability
	Network Outages
	Notifications
	Plugin Theory
	Service Check Scheduling
	State Types
	Time Periods

	Advanced Topics
	Event Handlers
	External Commands
	Indirect Host and Service Checks
	Passive Host and Service Checks
	Volatile Services
	Service and Host Result Freshness Checks
	Distributed Monitoring
	Redundant and Failover Network Monitoring
	Detection and Handling of State Flapping
	Service Check Parallelization
	Notification Escalations
	Monitoring Service and Host Clusters
	Host and Service Dependencies
	State Stalking
	Performance Data
	Scheduled Downtime
	Using the Embedded Perl Interpreter
	Adaptive Monitoring
	Object Inheritance
	Time-Saving Tricks for Object Definitions

	Integration with other Software
	UCD-SNMP (NET-SNMP) Integration
	TCP Wrapper Integration

	Miscellaneous
	Securing Nagios
	Tuning Nagios for Maximum Performance
	Using the Nagiostats Utility
	Using Macros in Commands
	Information on the CGIs
	Custom CGI Headers and Footers
	Frequently Asked Questions (FAQs)
	Template-Based Object Configuration
	External Command File Permissions
	Extended Information Configuration

