
symfony advent calendar

Table of Contents
symfony advent calendar day one: starting up a project...1/202

The challenge..1/202
The project..1/202
What for today..1/202
Symfony installation...2/202
Project Setup...2/202
Web service setup...3/202
Subversion..4/202
See you Tomorrow..6/202

symfony advent calendar day two: setting up a data model..7/202
Previously on symfony...7/202
The project unveiled...7/202
Where to start?..8/202
Data Model...8/202
The database...11/202
Test data access via a CRUD..12/202
See you Tomorrow..13/202

symfony advent calendar day three: dive into the MVC architecture..15/202
Previously on symfony...15/202
The MVC model...15/202
Change the layout...15/202
A few words about environments...17/202
Redefine the default homepage...17/202
Define test data...18/202
Create a batch to populate the database..19/202
Accessing the data in the model...21/202
Modify the question/list template...22/202
Cleanup...24/202
See you Tomorrow..24/202

symfony advent calendar day four: refactoring..25/202
Previously on symfony...25/202
Show the answers to a question..25/202
Modify the model, part I...28/202
Don't repeat yourself...28/202
Modify the model, part II..29/202
Same for the answers..33/202
Routing...35/202
See you Tomorrow..38/202

symfony advent calendar day five: forms and pager..39/202
Previously on symfony...39/202
Login form..39/202

symfony advent calendar

i

Table of Contents
symfony advent calendar day five: forms and pager

Question pager..43/202
Refactoring..46/202
See you Tomorrow..47/202

symfony advent calendar day six: security and form validation...48/202
Previously on symfony...48/202
Login form validation...48/202
Authenticate a user..50/202
Restrict access...54/202
How about a bit of refactoring?..54/202
See you Tomorrow..56/202

symfony advent calendar day seven: model and view manipulation..57/202
Previously on symfony...57/202
Prefactoring...57/202
List of the recent questions...59/202
List of the recent answers...61/202
User profile...62/202
Add a navigation bar...64/202
A little more view configuration...67/202
Look at what we have done..68/202
See you Tomorrow..69/202

symfony advent calendar day eight: AJAX interactions..70/202
Previously on symfony...70/202
Add an indicator in the layout...70/202
Add an AJAX interaction to declare interest..70/202
Add an inline 'sign-in' form..74/202
See you Tomorrow..76/202

symfony advent calendar day nine: local improvements...77/202
Previously on symfony...77/202
Allow rich text formatting on questions and answers...77/202
Test Markdown text..77/202
Hide all ids..80/202
Routing...81/202
See you Tomorrow..83/202

symfony advent calendar day ten: Alter data with Ajax forms..84/202
Previously on symfony...84/202
Add a new question...84/202
Handle the form submission...86/202
Add a new answer...87/202
See you Tomorrow..90/202

symfony advent calendar

ii

Table of Contents
symfony advent calendar day eleven: syndication feed..92/202

Previously on symfony...92/202
Popular questions feed..92/202
The magic...95/202
Interface improvements..95/202
See you Tomorrow..96/202

symfony advent calendar day twelve: Emails...97/202
Previously on symfony...97/202
Password recovery..97/202
Send an email..99/202
See you Tomorrow..102/202

symfony advent calendar day thirteen: Tags..103/202
Previously on symfony...103/202
The QuestionTag class..103/202
Display the tags of a question...106/202
Display a short list of popular tags for a question..108/202
Display the list of questions tagged with a word..111/202
See you Tomorrow..112/202

symfony advent calendar day fourteen: Tags, part II..114/202
Previously on symfony...114/202
Add tags to a question...114/202
Display the tag bubble..117/202
See you Tomorrow..120/202

symfony advent calendar day fifteen: Unit tests...121/202
Previously on symfony...121/202
Simple test..121/202
Unit tests in a symfony project...122/202
Simulating a web browsing session..125/202
A few words about environments...132/202
See you Tomorrow..132/202

symfony advent calendar day sixteen: Lazy day...134/202
See you Tomorrow..134/202

symfony advent calendar day seventeen: API...135/202
Previously on symfony...135/202
The API...135/202
HTTP Authentication..136/202
API response...138/202
Integrating an external API...140/202
Paypal donation..141/202

symfony advent calendar

iii

Table of Contents
symfony advent calendar day seventeen: API

See you Tomorrow..141/202

symfony advent calendar day eighteen: Filters...142/202
Previously on symfony...142/202
Configurable feature...142/202
Create a filter..142/202
Get a permanent tag from the domain name...143/202
Model modifications...144/202
Server configuration...147/202
See you Tomorrow..147/202

symfony advent calendar day nineteen: Performance and cache...148/202
Previously on symfony...148/202
Load testing tools..148/202
Improve performances with the cache..151/202
See you Tomorrow..156/202

symfony advent calendar day twenty: Administration and moderation..157/202
Previously on symfony...157/202
The expected result: what the client says..157/202
Backend vs. enhanced frontend..159/202
The functionality: what the developers understand..160/202
Implementation...161/202
See you Tomorrow..170/202

symfony advent calendar day twenty-one: Search engine...172/202
Previously on symfony...172/202
How to build a search engine?..172/202
Word index...172/202
The search function...178/202
See you Tomorrow..182/202

symfony advent calendar day twenty-two: Transfer to production..183/202
Previously on symfony...183/202
Synchronization..183/202
Production server configuration..185/202
Upgrading your application..188/202
See you Tomorrow..190/202

symfony advent calendar day twenty-three: Internationalization..191/202
Previously on symfony...191/202
Localization..191/202
Internationalization...192/202
See you Tomorrow..198/202

symfony advent calendar

iv

Table of Contents
symfony advent calendar day twenty-four: What's next?...199/202

Previously on symfony...199/202
Use it...199/202
Install it...199/202
Contribute to it..201/202
Acknowledgements...202/202
See you soon...202/202

symfony advent calendar

v

symfony advent calendar day one: starting up a
project

The challenge

The symfony advent calendar is a set of 24 tutorials, published day-by-day between December 1st and
Christmas. That's right, every day including week-ends, a new tutorial will be published. Each tutorial is
meant to last less than one hour, and will be the occasion to see the ongoing development of a web 2.0
application, from A to Z. For Christmas time, the resulting application will be put online, and the source code
made open source. This application will be usable, interesting, useful, and fun.

Twenty-four times less than one hour equals less than a day, and that's exactly how long we think that a
developer needs to learn symfony. Every day, new features will be added to the application, and we'll take
advantage of this development to show you how to take advantage of symfony's functionality as well as good
practices in symfony web development. Every day, you will realize how fast and efficient it is to develop a
web app with symfony, and you will want to know more.

Considering that it wouldn't be enough of a challenge with just that, and also because we are lazy folks, we
have no plans for the 21st day - winter time. The feature that the community will require the most will be
added to the application that day, without preparation, and we'll make it work. It will be the
get-a-symfony-guru-for-a-day day.

The project

The application to be designed could have been a trivial "show-and-tell" application, like a to-do list, a phone
book, or a bookstore. But we want to use symfony on an original project, something useful, with numerous
features and an important size. The goal is really to prove that symfony can be used in complex situations, to
develop professional applications with style and little effort.

We also hope that lots of people will actually use the application, in order to show that a symfony website can
support an important load. That's why the application needs to bring an actual service, and to answer an
existing need - or to create a new one. The launch of the website will be a live stress test; this also means that
we will need you, humble readers, to digg/bookmark/blog the site and talk about it in real life to check how
many visits it can support.

The content of the project will be kept secret for another day. We still have much to do today without
describing a full-featured web 2.0 application. This should give you some time to argue and launch additional
hypothesis. However, we need a name, so let's call it: askeet.

What for today

The objective of the day is to display a page of the application in a web browser, and to setup a professional
development environment. This includes installation of symfony, creation of an application, web server
configuration, and setup of a source version control system.

symfony advent calendar

symfony advent calendar day one: starting up a project 1/202

It should be easy for those who already followed the previous tutorials, and not very hard for others. And
everyone should learn something new.

We'll assume that you use a Unix-like system with Apache, MySQL and PHP 5 installed. If you run a
Windows system, don't panic: it will also work fine, you'll just have to type a few commands in the cmd
prompt.

Symfony installation

The simplest way to install symfony is to use the PEAR package. However, to be able to use channels - and
access the symfony channel - you need to upgrade to PEAR 1.4.0 or greater (unless you run PHP 5.1.0, which
includes PEAR 1.4.5):

$ pear upgrade PEAR

Note: if you experience any problem while using PEAR, refer to the installation book chapter.

Now you can add the 'symfony' channel:

$ pear channel-discover pear.symfony-project.com

You are ready to install the latest stable version of symfony together with all its dependencies:

$ pear install symfony/symfony-beta

If you don't have the phing package, you will need to install it as well:

$ pear install http://phing.info/pear/phing-current.tgz

Check that symfony is installed by using the command line to check the version:

$ symfony -V

If you are curious about what this new command line tool can do for you, type symfony -T to list the
available options. You might also want to read the installation book chapter to see how to install symfony
from a tgz archive or the svn repository. A community contribution also details a non-PEAR installation in the
symfony wiki.

Project Setup

In symfony, applications sharing the same data model are regrouped into projects. For the askeet project, we
can already disclose the fact that there will be a frontend and a backend: that makes two applications. The
project being the shell of the applications, it has to be created first. To do that, all you need is a directory and a
symfony init-project command line:

$ mkdir /home/sfprojects/askeet
$ cd /home/sfprojects/askeet
$ symfony init-project askeet

symfony advent calendar

What for today 2/202

http://pear.php.net
http://www.symfony-project.com/content/book/page/installation.html
http://phing.info/wiki/index.php
http://www.symfony-project.com/content/book/page/installation.html
http://www.symfony-project.com/trac/wiki/InstallingSymfonyWithoutPear
http://www.symfony-project.com/trac/wiki/InstallingSymfonyWithoutPear

Now it is time to create the frontend application with the symfony init-app command:

$ symfony init-app frontend

Wow, that was fast.

Note: Windows users are advised to run symfony and to setup their new project in a path
which contains no spaces - this includes the Documents and Settings directory.

Web service setup

Web server configuration

Now it is time to change your Apache configuration to make the new application accessible. In a professional
context, it is better to setup a new application as a virtual host, and that's what will be described here.
However, if you prefer to add it as an alias, find how in the web server configuration book chapter.

Open the httpd.conf file of your Apache/conf/ directory and add at the end:

<VirtualHost *:80>
 ServerName askeet
 DocumentRoot "/home/sfprojects/askeet/web"
 DirectoryIndex index.php
 Alias /sf /usr/local/lib/php/data/symfony/web/sf

 <Directory "/home/sfprojects/askeet/web">
 AllowOverride All
 </Directory>
</VirtualHost>

Note: the /sf alias has to point to the symfony folder in your PEAR data directory. To
determine it, just type pear config-show. Symfony applications need to have access to
this folder to get some image and javascript files, to properly run the web debug toolbar and
the AJAX helpers.

In Windows, you need to replace the Alias line by something like:

 Alias /sf "C:\php\pear\data\symfony\web\sf"

Declare the domain name

The domain name askeet has to be declared locally.

If you run a Linux system, it has to be done in the /etc/hosts file. If you run Windows XP, this file is
located in the C:\WINDOWS\system32\drivers\etc\ directory.

Add in the following line:

127.0.0.1 askeet

symfony advent calendar

Project Setup 3/202

http://www.symfony-project.com/content/book/page/web_server.html

Note: you need to have administrator rights to do this.

If you don't want to setup a new host, you should add a Listen statement to serve your website on another
port. This will allow you to use the localhost domain.

Test the new configuration

Restart Apache, and check that you now have access to the new application:

http://askeet/

Note: symfony can use the mod_rewrite module to remove the /index.php/ part of the
URLs. If you don't want to use it or if your web server does not provide an equivalent facility,
you can remove the .htaccess file located in the web/ directory. If your version of
Apache is not compiled with mod_rewrite, check that you have the mod_rewrite DSO
installed and the following lines in your httpd.conf:

AddModule mod_rewrite.c
LoadModule rewrite_module modules/mod_rewrite.so

You will learn more about the smart URLs in the routing chapter.

You should also try to access the application in the development environment. Type in the following URL:

http://askeet/frontend_dev.php/

The web debug toolbar should show on the top right corner, including small icons proving that your Alias
sf/ configuration is correct.

Once again, the setup is a little different if you want to run a IIS server in a Windows environment. Find how
to configure it in the related tutorial.

Subversion

One of the good principles of lazy folks is not to worry about breaking existing code. As we want to work
fast, we want to revert to a previous version if a modification is inefficient, we want to allow more than one
person to work on the project, and we also want you to have access to all the daily versions of the application,
we are going to adopt source version control. We will use Subversion for this purpose. Assuming you have
already installed a subversion server or have access to a subversion server.

symfony advent calendar

Web service setup 4/202

http://www.symfony-project.com/content/book/page/routing.html
http://www.symfony-project.com/content/book/page/web_server_iis.html
http://subversion.tigris.org/

Fist, create a new repository for the askeet project:

$ svnadmin create $SVNREP_DIR/askeet
$ svn mkdir -m "layout creation" file:///$SVNREP_DIR/askeet/trunk file:///$SVNREP_DIR/askeet/tags file:///$SVNREP_DIR/askeet/branches

Next, you have to do the first import, omitting the cache/ and log/ temporary files:

$ cd /home/sfprojects/askeet
$ rm -rf cache/*
$ rm -rf log/*
$ svn import -m "initial import" . file:///$SVNREP_DIR/askeet/trunk

Now get rid of the original application directory and use a checkout of the SVN version:

$ cd /home/sfprojects
$ mv askeet askeet.origin
$ svn co file:///$SVNREP_DIR/askeet/trunk/ askeet/
$ ls askeet

$ rm -rf askeet.origin

There is one remaining thing to setup. If you commit your working directory to the repository, you may copy
some unwanted files, like the ones located in the cache and log directories of your project. So you need to
specify an ignore list to SVN for this project.

$ cd /home/sfprojects/askeet
$ svn propedit svn:ignore cache

The default text editor configured for SVN should launch. Add the sub directories of cache/ that SVN
should ignore when committing:

*

Save and quit. You're done.

Repeat the procedure for the log/ directory:

$ svn propedit svn:ignore log

And enter only:

*

Now, make sure to set the write permissions on the cache and logs directories back to the appropriate levels so
that your web server can write to them again. At the command line:

$ chmod 777 cache
$ chmod 777 log

Note: Windows users can use the great TortoiseSVN client to manage their subversion
repository.

symfony advent calendar

Subversion 5/202

http://tortoisesvn.tigris.org/

If you want to know more about source version control, check the project creation chapter in the symfony
book.

Note: The askeet SVN repository is public. You can access it at:

 http://svn.askeet.com/

Go ahead, check it out.

Today's code has been committed, you can checkout the release_day_1 tag:

 $ svn co http://svn.askeet.com/tags/release_day_1/ askeet/

See you Tomorrow

Well, it's already one hour! We talked a lot, and did nothing new for the symfony early adopters. But just have
a look at what will be revealed for our second day of the symfony advent calendar:

what the application will do•
building the data model and generating the object-relational mapping•
scaffolding a module•

In between, if you want to keep in touch with the latest askeet news, you can subscribe to the askeet
mailing-list or go to the dedicated forum.

Make sure you come back tomorrow!

symfony advent calendar

See you Tomorrow 6/202

http://www.symfony-project.com/content/book/page/project_creation.html
mailto:askeet-subscribe@symfony-project.com
mailto:askeet-subscribe@symfony-project.com
http://www.symfony-project.com/forum/index.php/f/8/

symfony advent calendar day two: setting up a
data model

Previously on symfony

During day one of this long but interesting tutorial, we saw how to install the symfony framework, setup a
new application and development environment, and bring safety to the code with source version control. By
the way, the code of the application generated during the first day is available in the askeet SVN repository at:

http://svn.askeet.com/

The objectives for the second day are to define what the final result should be in terms of functionalities,
sketch the data model, and begin coding. This will include generating an object-relational mapping and using
it interactively to create, retrieve and update records in a database with an application scaffolding.

That's quite a lot. Let's get started.

The project unveiled

What do you want to know? That's an interesting question. There are many interesting questions, like:

What shall I do tonight with my girlfriend?•
How can I generate traffic to my blog?•
What's the best web application framework?•
What's the best affordable restaurant in Paris?•
What's the answer to life, the universe, and everything?•

All these questions don't have only one answer, and the best answer is a matter of opinion. As a matter of fact,
the questions that only have one answer are often the least interesting (like, how much is 1 + 1?) but the only
ones to be solved on the web. That's not fair.

Meet askeet. A website dedicated to help people find answers to their questions. Who will answer those
ticklish questions? Everybody. And everybody will be able to rate other people's answers, so that the most
popular answers get more visibility. As the number of questions increases, it becomes impossible to organize
them in categories and sub-categories, so the creator of a question will be able to tag it with any word he/she
wants, "Ã la" del.icio.us. Of course, the popularity of tags will have to be represented through a tag bubble. If
one wants to follow the answers to a particular question, he/she can subscribe to this question's RSS feed. All
these functionalities have to be elegant and lightweight, so all the interactions that don't actually need a new
page have to be of AJAX type. Eventually, a back-end is necessary to moderate questions and answers
reported as spam, or to push artificially a question that the administrator finds encouraging.

Then you should ask: Haven't I already seen such a website on the web? Well, if you actually did, we're
busted, but if you refer to faqts, eHow, Ask Jeeves or something similar, with no collaborative answers, no
AJAX, no RSS and no tags, this is not the same website. We are talking about a web 2.0 application here.

symfony advent calendar

symfony advent calendar day two: setting up a data model 7/202

http://www.askeet.com/
http://del.icio.us/
http://www.faqts.com/
http://www.ehow.com/
http://www.ask.com/

The big deal about askeet is that it is not only a website, it is an application that anyone can download, install
at home or in a company Intranet, tweak and add features to. The source code will be released with an
open-source license. Your HR head is looking for a knowledge management system? You want to keep track
of all the tricks you learned about fixing your car? You don't want to develop a Frequently Asked Questions
section for your website? Search no more, for askeet exists. Well, it will exist, that's our Christmas present.

Where to start?

So how are you supposed to start a symfony application? It all depends on you. You could write stories, do a
planning game and find a partner to do pair programming if you were an XP adept, or write a detailed
specification of the website, together with a sketch of all the objects, states, interactions and so on if you were
a UML fan.

But this tutorial isn't about application development in general, so we'll start with a basic relational data
model, and add working features one by one. What we need is an application that can be used at the end of
every day, not a gigantic ongoing bunch of code that never outputs anything. In an ideal world, we should
write unit tests for any feature we add, but we honestly won't have time for that. One day will be dedicated to
unit tests though, so keep on reading.

For this project, we will use a MySQL database with the InnoDB table type to take advantage of the integrity
constraints and transaction support. We could have used a SQLite database for the first steps, to avoid setting
up a real database. This would have required only a few changes in the databases.yml file, that we'll
leave for you to investigate as an exercise.

Data Model

Relational model

Obviously, there will be a 'question' and an 'answer' tables. We'll need a 'user' table, and we'll store the interest
of users for a question in a 'interest' table, and the relevancy given by a person to an answer in a 'relevancy'
table.

Users will have to be identified to add a question, to rate the relevancy an answer, or to declare interest to a
question. Users won't need to be identified to add an answer, but an answer will always be linked to a user so
that users with popular answers can be distinguished. The answers entered without any identification will be
shown as contributions of a generic user, called 'Anonymous Coward'. It's easier to understand with an entity
relationship diagram:

symfony advent calendar

The project unveiled 8/202

http://www.xprogramming.com/xpmag/whatisxp.htm
http://www.uml.org/

Notice that we've declared a created_at field for each table. Symfony recognizes such fields and sets the
value to the current system time when a record is created. That's the same for updated_at fields: Their
value is set to the system time whenever the record is updated.

schema.xml

The relational model has to be translated to a configuration file for symfony to understand it. That's the
purpose of the schema.xml file, located in the askeet/config/ directory.

There are two ways to write this file: by hand, and that's the way we like it, or from an existing database. Let's
see the first solution. First, we need to rename the sample installed by default:

$ svn rename config/schema.xml.sample config/schema.xml

The syntax of the schema.xml, explained in detail on the Propel website, is relatively simple: It's an XML
file, in which <table> tags contain <column>, <foreign-key> and <index> tags. Once you write
one, you can write all of them. Here is the schema.xml corresponding to the relational model described
previously:

<?xml version="1.0" encoding="UTF-8"?>
<database name="propel" defaultIdMethod="native" noxsd="true">
<table name="ask_question" phpName="Question">

<column name="id" type="integer" required="true" primaryKey="true" autoIncrement="true" />
<column name="user_id" type="integer" />
<foreign-key foreignTable="ask_user">

<reference local="user_id" foreign="id"/>
</foreign-key>
<column name="title" type="longvarchar" />
<column name="body" type="longvarchar" />
<column name="created_at" type="timestamp" />
<column name="updated_at" type="timestamp" />

</table>

<table name="ask_answer" phpName="Answer">
<column name="id" type="integer" required="true" primaryKey="true" autoIncrement="true" />
<column name="question_id" type="integer" />
<foreign-key foreignTable="ask_question">

symfony advent calendar

Data Model 9/202

http://propel.phpdb.org/trac/

<reference local="question_id" foreign="id"/>
</foreign-key>
<column name="user_id" type="integer" />
<foreign-key foreignTable="ask_user">

<reference local="user_id" foreign="id"/>
</foreign-key>
<column name="body" type="longvarchar" />
<column name="created_at" type="timestamp" />

</table>

<table name="ask_user" phpName="User">
<column name="id" type="integer" required="true" primaryKey="true" autoIncrement="true" />
<column name="nickname" type="varchar" size="50" />
<column name="first_name" type="varchar" size="100" />
<column name="last_name" type="varchar" size="100" />
<column name="created_at" type="timestamp" />

</table>

<table name="ask_interest" phpName="Interest">
<column name="question_id" type="integer" primaryKey="true" />
<foreign-key foreignTable="ask_question">

<reference local="question_id" foreign="id"/>
</foreign-key>
<column name="user_id" type="integer" primaryKey="true" />
<foreign-key foreignTable="ask_user">

<reference local="user_id" foreign="id"/>
</foreign-key>
<column name="created_at" type="timestamp" />

</table>

<table name="ask_relevancy" phpName="Relevancy">
<column name="answer_id" type="integer" primaryKey="true" />
<foreign-key foreignTable="ask_answer">

<reference local="answer_id" foreign="id"/>
</foreign-key>
<column name="user_id" type="integer" primaryKey="true" />
<foreign-key foreignTable="ask_user">

<reference local="user_id" foreign="id"/>
</foreign-key>
<column name="score" type="integer" />
<column name="created_at" type="timestamp" />

</table>

</database>

Notice that the database name is set to propel in this file, whatever the actual database name. This is a
parameter used to connect the Propel layer to the symfony framework. The actual name of the database will
be defined in the databases.yml configuration file (see below).

There is another way to create a schema.xml if you have an existing database. That is, if you are familiar
with a graphical database design tool, you will prefer to build the schema from the generated MySQL
database. Before you do that, you just need to edit the propel.ini file located in the askeet/config/
directory and enter the connection settings to your database:

propel.database.url = mysql://username:password@localhost/databasename

symfony advent calendar

Data Model 10/202

...where username, password, localhost and databasename are the actual connection settings of
your database. You can now call the propel-build-schema command (from the askeet/ directory) to
generate the schema.xml from the database:

$ symfony propel-build-schema

Note: some tools allow you to build a database graphically (for instance Fabforce's
Dbdesigner) and generate directly a schema.xml (with DB Designer 4 TO Propel Schema
Converter).

Object model build

To use the InnoDB engine, one line has to be added to the propel.ini file of the askeet/config/
directory:

propel.mysql.tableType = InnoDB

Once the schema.xml is built, you can generate an object model based on the relational model. In symfony,
the object relational mapping is handled by Propel, but encapsulated into the symfony command:

$ symfony propel-build-model

This command (you need to call it from the root directory of the askeet project) will generate the classes
corresponding to the tables defined in the schema, together with standard accessors (->get() and ->set()
methods). You can look at the generated code in the askeet/lib/model/om/ directory. If you wonder
why there are two classes per table, go and check the model chapter of the symfony book. These classes will
be overridden each time that you do a build-model, and this will happen a lot in this project. So if you
need to add methods to the model objects, you have to modify the ones located in the
askeet/lib/model/ directory - these classes inherit from the /om ones.

The database

Connection

Now that symfony has an object model of the database, it is time to connect your project to the MySQL
database. First, you have to create a database in MySQL:

$ mysqladmin -u youruser -p create askeet

Now open the askeet/config/databases.yml configuration file. If this is your first time with
symfony, you will discover that the symfony configuration files are written in YAML. The syntax is very
simple, but there is one major obligation in YAML files: never use tabulations, always use spaces. Once you
know that, you are ready to edit the file and enter the actual connection settings to your database under the
all: category:

all:
 propel:
 class: sfPropelDatabase

symfony advent calendar

Data Model 11/202

http://www.fabforce.net/dbdesigner4/
http://www.fabforce.net/dbdesigner4/
http://blog.tooleshed.com/docs/dbd2propel/transform.php
http://blog.tooleshed.com/docs/dbd2propel/transform.php
http://www.symfony-project.com/content/book/page/model.html
http://www.yaml.org/

 param:
 phptype: mysql
 host: localhost
 database: askeet
 username: youruser
 password: yourpasswd

If you want to know more about symfony configuration and YAML files, read the configuration in practice
chapter of the symfony book.

Build

If you didn't write the schema.xml file by hand, you probably already have the corresponding tables in your
database. You can then skip this part.

For you keyboard fans, here is a surprise: You don't need to create the tables and the columns in the MySQL
database. You did it once in the schema.xml, so symfony will build the SQL statement creating all that for
you:

$ symfony propel-build-sql

This command creates a schema.sql in the askeet/data/sql/ directory. Use it as a SQL command in
MySQL:

$ mysql -u youruser -p askeet < data/sql/schema.sql

Test data access via a CRUD

It is always good to see that the work done is useful. Until now, your browser wasn't of any use, and yet we
are supposed to build a web application... So let's create a basic set of symfony templates and actions to
manipulate the data of the 'question' table. This will allow you to create a few questions and display them.

In the askeet/ directory, type:

$ symfony propel-generate-crud frontend question Question

This generates a scaffolding for a question module in the frontend application, based on the
Question Propel object model, with basic Create Retrieve Update Delete actions (which explains the
CRUD acronym). Don't get confused: A scaffolding is not a finished application, but the basic structure on top
of which you can develop new features, add business rules and customize the look and feel.

The list of all the actions created by a CRUD generator is:

Action name Description
list shows all the records of a table
index forwards to list
show shows all the fields of a given record

symfony advent calendar

The database 12/202

http://www.symfony-project.com/content/book/page/configuration_practice.html
http://www.symfony-project.com/content/book/page/configuration_practice.html

edit displays a form to create a new record or edit an existing one
update modifies a record according to the parameters given in the request, then forwards to show
delete deletes a given record from the table
You can find more about generated actions in the scaffolding chapter of the symfony book.

In the askeet/apps/frontend/modules/ directory, notice the new question module and browse
its source.

Whenever you add a new class that need to be autoloaded, don't forget to clear the config cache (to reload the
autoloading cache):

$ symfony cc frontend config

You can now test it online by requesting:

http://askeet/question

Go ahead, play with it. Add a few questions, edit them, list them, delete them. If it works, this means that the
object model is correct, that the connection to the database is correct, and that the mapping between the
relational model of the database and the object model of symfony is correct. That's a good functional test.

See you Tomorrow

You didn't write one line of PHP, and yet you have a basic application to use. That's not bad for the second
day. Tomorrow, we'll start writing some code in order to have a welcoming home page that displays the list of
questions. We will also add test data to our database using a batch process, and learn how to extend the model.

symfony advent calendar

Test data access via a CRUD 13/202

http://www.symfony-project.com/content/book/page/scaffolding.html

Now that you know what the application will do, you may be able to imagine an additional feature to it. Feel
free to suggest anything using the askeet mailing-list, the most popular idea will become the 21st day addition
of this symfony advent calendar.

Feel free to browse the source of today's tutorial (tag release_day_2) at:

http://svn.askeet.com/tags/release_day_2

symfony advent calendar

See you Tomorrow 14/202

mailto:askeet-subscribe@symfony-project.com

symfony advent calendar day three: dive into the
MVC architecture

Previously on symfony

During day two you learned how to build an object model based on a relational data model, and generate
scaffolding for one of these objects. By the way, the code of the application generated during the previous
days is available in the askeet SVN repository at:

http://svn.askeet.com/

The objectives for the third day are to define a nicer layout for the site, define the list of questions as the
default homepage, show the number of users interested by one question, and populate the database from
sample text files in order to have test data. That's not much to do, but quite a lot to read and understand.

To read this tutorial, you should be familiar with the concepts of project, application, module and action in
symfony as explained in the controller chapter of the symfony book.

The MVC model

Today will be the first dive in the world of the MVC architecture. What does this mean? Simply that the code
used to generate one page is located in various files according to its nature.

If the code concerns data manipulation independent from a page, it should be located in the Model (most of
the time in askeet/lib/model/). If it concerns the final presentation, it should be located in the View; in
symfony, the view layer relies on templates (for instance in
askeet/apps/frontend/modules/question/templates/) and configuration files. Eventually,
the code dedicated to tie all this together and to translate the site logic into good old PHP is located in the
Controller, and in symfony the controller for a specific page is called an action (look for actions in
askeet/apps/frontend/modules/question/actions/). You can read more about this model in
the MVC implementation in symfony chapter of the symfony book.

While our applications view will only change slightly today, we will manipulate a lot of different files. Don't
panic though, since the organization of files and the separation of the code in various layers will soon become
evident and very useful.

Change the layout

In application of the decorator design pattern, the content of the template called by an action is integrated into
a global template, or layout. In other words, the layout contains all the invariable parts of the interface, it
"decorates" the result of actions. Open the default layout (located in
askeet/apps/frontend/templates/layout.php) and change it to the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

symfony advent calendar

symfony advent calendar day three: dive into the MVC architecture 15/202

http://www.symfony-project.com/content/book/page/controller.html
http://en.wikipedia.org/wiki/Model-view-controller
http://www.symfony-project.com/content/book/page/mvc.html
http://en.wikipedia.org/wiki/Decorator_pattern

<head>

<?php echo include_http_metas() ?>
<?php echo include_metas() ?>

<?php echo include_title() ?>

<link rel="shortcut icon" href="/favicon.ico" />

</head>
<body>

 <div id="header">

 <?php echo link_to('about', '@homepage') ?>

 <h1><?php echo link_to(image_tag('askeet_logo.gif', 'alt=askeet'), '@homepage') ?></h1>
 </div>

 <div id="content">
 <div id="content_main">

<?php echo $sf_data->getRaw('sf_content') ?>
 <div class="verticalalign"></div>
 </div>

 <div id="content_bar">
 <!-- Nothing for the moment -->
 <div class="verticalalign"></div>
 </div>
 </div>

</body>
</html>

Note: We tried to keep the markup as semantic as possible, and to move all the styling into
the CSS stylesheets. These stylesheets won't be described here, since CSS syntax is not the
purpose of this tutorial. They are available for download though, in the SVN repository.

We created two stylesheets (main.css and layout.css). Copy them into your
askeet/web/css/ directory and edit your frontend/config/view.yml to change
the autoloaded stylesheets:

stylesheets: [main, layout]

This layout is still lightweight for the moment, it will be rebuilt later (in about a week). The important things
in this template are the <head> part, which is mostly generated, and the sf_content variable, which
contains the result of the actions.

Check that the modifications display correctly by requesting the home page - this time in the development
environment:

http://askeet/frontend_dev.php/

symfony advent calendar

Change the layout 16/202

http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://svn.askeet.com/tags/release_day_3/web/css/

A few words about environments

If you wonder what the difference between http://askeet/frontend_dev.php/ and
http://askeet/ is, you should probably have a look at the configuration chapter of the symfony book.
For now, you just need to know that they point to the same application, but in different environments. An
environment is a unique configuration, where some features of the framework can be activated or deactivated
as required.

In this case, the /frontend_dev.php/ URL points to the development environment, where the whole
configuration is parsed at each request, the HTML cache is deactivated, and the debug tools are all available
(including a semi-transparent toolbar located at the top right corner of the window). The / URL - equivalent
to /index.php/ - points to the production environment, where the configuration is "compiled" and the
debug tools deactivated to speed up the delivery of pages.

These two PHP scripts - frontend_dev.php and index.php - are called front controllers, and all the
requests to the application are handled by them. You can find them in the askeet/web/ directory. As a
matter of fact, the index.php file should be named frontend_prod.php, but as frontend is the first
application that you created, symfony deduced that you probably wanted it to be the default application and
renamed it to index.php, so that you can see your application in the production environment by just
requesting /. If you want to learn more about the front controllers and the Controller layer of the MVC model
in general, refer to the controller chapter in the symfony book.

A good rule of thumb is to navigate in the development environment until you are satisfied with the feature
you are working on, then switch to the production environment to check its speed and "nice" URLs.

Note: Remember to always clear the cache when you add some classes or when you change
some configuration files to see the result in the production environment.

Redefine the default homepage

For now, if you request the home page of the new website, it shows a 'Congratulations' page. A better idea
would be to show the list of questions (referenced in these documents as question/list and translated as:
the list action of the question module). To do this, open the routing configuration file of the frontend
application, found in askeet/apps/frontend/config/routing.yml and locate the homepage:
section. Change it to:

symfony advent calendar

A few words about environments 17/202

http://www.symfony-project.com/content/book/page/configuration.html
http://www.symfony-project.com/content/book/page/controller.html

homepage:
 url: /
 param: { module: question, action: list }

Refresh the home page in the development environment (http://askeet/frontend_dev.php/); it
now displays the list of questions.

Note: if you are a curious person, you might have looked for this page containing the
'Congratulations' message. And you might be surprised not to find it in your askeet
directory. As a matter of fact, the template for the default/index action is defined in the
symfony data directory and is independent from the project. If you want to override it, you
can still create a default module in your own project.

The possibilities offered by the routing system will be detailed in the near future, but if you are interested, you
can read the routing chapter of the symfony book.

Define test data

The list displayed by the home page will remain quite empty, unless you add your own questions. When you
develop an application, it is a good idea to have some test data at your disposal. Entering test data by hand
(either via the CRUD interface of directly in the database) can be a real pain, that's why symfony can use text
files to populate databases.

We'll create a test data file in the askeet/data/fixtures/ directory (this directory has to be created).
Create a file called test_data.yml with the following content:

User:
 anonymous:
 nickname: anonymous
 first_name: Anonymous
 last_name: Coward

 fabien:
 nickname: fabpot
 first_name: Fabien
 last_name: Potencier

 francois:
 nickname: francoisz
 first_name: FranÃ§ois
 last_name: Zaninotto

Question:
 q1:
 title: What shall I do tonight with my girlfriend?
 user_id: fabien
 body: |
 We shall meet in front of the Dunkin'Donuts before dinner,
 and I haven't the slightest idea of what I can do with her.
 She's not interested in programming, space opera movies nor insects.
 She's kinda cute, so I really need to find something
 that will keep her to my side for another evening.

symfony advent calendar

Redefine the default homepage 18/202

http://www.symfony-project.com/content/book/page/routing.html

 q2:
 title: What can I offer to my step mother?
 user_id: anonymous
 body: |
 My stepmother has everything a stepmother is usually offered
 (watch, vacuum cleaner, earrings, del.icio.us account).
 Her birthday comes next week, I am broke, and I know that
 if I don't offer her something sweet, my girlfriend
 won't look at me in the eyes for another month.

 q3:
 title: How can I generate traffic to my blog?
 user_id: francois
 body: |
 I have a very swell blog that talks
 about my class and mates and pets and favorite movies.

Interest:
 i1: { user_id: fabien, question_id: q1 }
 i2: { user_id: francois, question_id: q1 }
 i3: { user_id: francois, question_id: q2 }
 i4: { user_id: fabien, question_id: q2 }

First of all, you may recognize YAML here. If you are not familiar with symfony, you might not know that
the YAML format is the favorite format for configuration files in the framework. It is not exclusive - if you
are attached to XML or .ini files, it is very easy to add a configuration handler to allow symfony to read them.
If you have time and patience, read more about YAML and the symfony configuration files in the
configuration in practice chapter of the symfony book. As of now, if you are not familiar with the YAML
syntax, you should get started right away, since this tutorial will use it extensively.

Ok, back to the test data file. It defines instances of objects, labeled with an internal name. This label is of
great use to link related objects without having to define ids (which are often auto-incremented and can not
be set). For instance, the first object created is of class User, and is labeled fabien. The first Question is
labeled q1. This makes it easy to create an object of class Interest by mentioning the related object labels:

Interest:
 i1:
 user_id: fabien
 question_id: q1

The data file given previously uses the short YAML syntax to say the same thing. You can find more about
data population files in the data files chapter of the symfony book.

Note: There is no need to define values for the created_at and updated_at columns,
since symfony knows how to fill them by default.

Create a batch to populate the database

The next step is to actually populate the database, and we wish to do that with a PHP script that can be called
with a command line - a batch.

symfony advent calendar

Define test data 19/202

http://www.yaml.org/
http://www.symfony-project.com/content/book/page/configuration_practice.html
http://www.yaml.org/
http://www.symfony-project.com/content/book/page/populate.html

Batch skeleton

Create a file called load_data.php in the askeet/batch/ directory with the following content:

<?php

define('SF_ROOT_DIR', realpath(dirname(__FILE__).'/..'));
define('SF_APP', 'frontend');
define('SF_ENVIRONMENT', 'dev');
define('SF_DEBUG', true);

require_once(SF_ROOT_DIR.DIRECTORY_SEPARATOR.'apps'.DIRECTORY_SEPARATOR.SF_APP.DIRECTORY_SEPARATOR.'config'.DIRECTORY_SEPARATOR.'config.php');

// initialize database manager
$databaseManager = new sfDatabaseManager();
$databaseManager->initialize();

?>

This script does nothing, or close to nothing: it defines a path, an application and an environment to get to a
configuration, loads that configuration, and initializes the database manager. But that' already a lot: that means
that all the code written below will take advantage of the auto-loading of classes, automatic connection to
Propel objects, and the symfony root classes.

Note: If you have examined symfony's front controllers (like askeet/web/index.php),
you might find this code extremely familiar. That's because every web request requires access
to the same objects and configuration, as a batch request does.

Data import

Now that the frame of the batch is ready, it is time to make it do something. The batch has to:

read the YAML file1.
Create instances of Propel objects2.
Create the related records in the tables of the linked database3.

This might sound complicated, but in symfony, you can do that with two lines of code, thanks to the
sfPropelData object. Just add the following code before the final ?> in the
askeet/batch/load_data.php script:

$data = new sfPropelData();
$data->loadData(sfConfig::get('sf_data_dir').DIRECTORY_SEPARATOR.'fixtures');

That's all. A sfPropelData object is created, and told to load all the data of a specific directory - our
fixtures directory - into the database defined in the databases.yml configuration file.

Note: The DIRECTORY_SEPARATOR constant is used here to be compatible with Windows
and *nix platforms.

symfony advent calendar

Create a batch to populate the database 20/202

http://www.php.net/define
http://www.php.net/realpath
http://www.php.net/dirname
http://www.php.net/define
http://www.php.net/define
http://www.php.net/define

Launch the batch

At last, you can check if these few lines of code were worth the hassle. type in the command line:

$ cd /home/sfprojects/askeet/batch
$ php load_data.php

Check the modifications in the database by refreshing the development home page again:

http://askeet/frontend_dev.php

Hooray, the data is there.

Note: By default, the sfPropelData object deletes all your data before loading the new
ones. You can also append to the current data:

$data = new sfPropelData();
$data->setDeleteCurrentData(false);
$data->loadData(sfConfig::get('sf_data_dir').DIRECTORY_SEPARATOR.'fixtures');

Accessing the data in the model

The page displayed when requesting the list action of the question module is the result of the
executeList() method (found in the

symfony advent calendar

Create a batch to populate the database 21/202

askeet/apps/frontend/modules/question/actions/action.class.php action file)
passed to the askeet/apps/frontend/modules/question/templates/listSuccess.php
template. This is based on a naming convention that is explained in the controller chapter of the symfony
book. Let's have a look at the code that is executed:

actions.class.php:

public function executeList ()
{

$this->questions = QuestionPeer::doSelect(new Criteria());
}

listSuccess.php:

...
<?php foreach ($questions as $question): ?>
<tr>
 <td><?php echo link_to($question->getId(), 'question/show?id='.$question->getId()) ?></td>
 <td><?php echo $question->getTitle() ?></td>
 <td><?php echo $question->getBody() ?></td>
 <td><?php echo $question->getCreatedAt() ?></td>
 <td><?php echo $question->getUpdatedAt() ?></td>
 </tr>
<?php endforeach; ?>

Step-by-step, here is what it does:

The action requires the records of the Question table that satisfy an empty criteria - i.e. all the
questions

1.

This list of records is put in an array ($questions) that is passed to the template2.
The template iterates over all the questions passed by the action3.
The templates shows the value of the columns of each record4.

The ->getId(), ->getTitle(), ->getBody(), etc. methods were created during the symfony
propel-build-model command call (do you remember yesterday ?) to retrieve the value of the id,
title, body, etc. fields. These are standard getters, formed by adding the prefix get to the camelCased
field name - and Propel also provides standard setters, prefixed with set. The Propel documentation
describes the accessors created for each class.

As for the mysterious QuestionPeer::doSelect(new Criteria()) call, it is also a standard
Propel request. The Propel documentation will explain it thoroughly.

Don't worry if you don't understand all the code written above, it will become clearer in a few days.

Modify the question/list template

Now that the database contains interests for questions, it should be easy to get the number of interested users
for one question. If you have a look at the BaseQuestion.php class generated by Propel in the
askeet/lib/model/om/ directory, you will notice a ->getInterests() method. Propel saw the
question_id foreign key in the Interest table definition, and deduced that a question has several

symfony advent calendar

Accessing the data in the model 22/202

http://www.symfony-project.com/content/book/page/controller.html
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://propel.phpdb.org/docs/user_guide/

interests. This makes it very easy to display what we want by modifying the listSuccess.php template,
located in askeet/apps/frontend/modules/question/templates/. In the process, we'll
remove the ugly tables and replace them with nice divs:

<?php use_helper('Text') ?>

<h1>popular questions</h1>

<?php foreach($questions as $question): ?>
 <div class="question">
 <div class="interested_block">
 <div class="interested_mark" id="interested_in_<?php echo $question->getId() ?>">

<?php echo count($question->getInterests()) ?>
 </div>
 </div>

 <h2><?php echo link_to($question->getTitle(), 'question/show?id='.$question->getId()) ?></h2>

 <div class="question_body">
<?php echo truncate_text($question->getBody(), 200) ?>

 </div>
 </div>
<?php endforeach; ?>

You recognize here the same foreach loop as in the original listSuccess.php. The link_to() and
the truncate_text() functions are template helpers provided by symfony. The first one creates a
hyperlink to another action of the same module, and the second one truncates the body of the question to 200
characters. The link_to() helper is auto-loaded, but you have to declare the use of the Text group of
helpers to use truncate_text().

Come on, try on your new template by refreshing the development homepage again.

http://askeet/frontend_dev.php/

symfony advent calendar

Modify the question/list template 23/202

http://www.php.net/echo
http://www.php.net/count
http://www.php.net/echo
http://www.php.net/echo

The number of interested users appears correctly close to each question. To get the presentation of the above
capture, download the main.css stylesheet and put it in your askeet/web/css/ directory.

Cleanup

The propel-generate-crud command created some actions and templates that will not be needed. It's
time to remove them.

Actions to remove in
askeet/apps/frontend/modules/question/actions/actions.class.php:

executeIndex•
executeEdit•
executeUpdate•
executeCreate•
executeDelete•

Template to remove in askeet/apps/frontend/modules/question/templates/:

editSuccess.php•

See you Tomorrow

Today was a great first step in the world of the Model-View-Controller paradigm: By manipulating layouts,
templates, actions and object of the Propel object model, you accessed all the layers of a MVC structured
application. Don't worry if you don't understand all the bridges between these layers: It will become clearer
little by little.

Many files were opened today, and if you want to know how files are organized in a project, refer to the file
structure chapter of the symfony book.

Tomorrow will be another great day: We will modify views, setup a more complex routing policy, modify the
model, and dig deeper into data manipulation and links between tables.

Until then, sleep tight, and feel free to browse the source of today's tutorial (tag release_day_3) at:

http://svn.askeet.com/tags/release_day_3

symfony advent calendar

Cleanup 24/202

http://svn.askeet.com/tags/release_day_3/web/css/main.css
http://www.symfony-project.com/content/book/page/file_structure.html
http://www.symfony-project.com/content/book/page/file_structure.html

symfony advent calendar day four: refactoring

Previously on symfony

During day three, all the layers of a MVC architecture were shown and modified to have the list of questions
properly displayed on the homepage. The application is getting nicer but still lacks content.

The objectives for the fourth day are to show the list of answers to a question, to give a nice URL to the
question detail page, to add a custom class, and to move some chunk of codes to a better place. This should
help you understand the concepts of template, model, routing policy, and refactoring. You may think that it is
too early to rewrite code that is only a few days old, but we'll see how you feel about it at the end of this
tutorial.

To read this tutorial, you should be familiar with the concepts of the MVC implementation in symfony. It
would also help if you had an idea about what agile development is.

Show the answers to a question

First, let's continue the adaptation of the templates generated by the Question CRUD during day two

The question/show action is dedicated to display the details of a question, provided that you pass it an
id. To test it, just call :

http://askeet/frontend_dev.php/question/show/id/1

question detail

You probably already saw the show page if you played with the application before. This is where we are
going to add the answers to a question.

A quick look at the action

First, let's have a look at the show action, located in the
askeet/apps/frontend/modules/question/actions/actions.class.php file:

public function executeShow()
{
$this->question = QuestionPeer::retrieveByPk($this->getRequestParameter('id'));
$this->forward404Unless($this->question);

}

If you are familiar with Propel, you recognize here a simple request to the Question table. It is aimed to get
the unique record having the value of the id parameter of the request as a primary key. In the example given
in the URL above, the id parameter has a value of 1, so the ->retrieveByPk() method of the
QuestionPeer class will return the object of class Question with 1 as a primary key. If you are not
familiar with Propel, come back after you've read some documentation on their website.

symfony advent calendar

symfony advent calendar day four: refactoring 25/202

http://www.symfony-project.com/content/book/page/mvc.html
http://en.wikipedia.org/wiki/Agile_software_development
http://propel.phpdb.org/docs/user_guide/

The result of this request is passed to the showSuccess.php template through the $question variable.

The ->getRequestParameter('id') method of the sfAction object gets... the request parameter
called id, whether it is passed in a GET or in a POST mode. For instance, if you require:

http://askeet/frontend_dev.php/question/show/id/1/myparam/myvalue

...then the show action will be able to retrieve myvalue by requesting
$this->getRequestParameter('myparam').

Note: The forward404Unless() method sends to the browser a 404 page if the question
does not exist in the database. It's always a good pratice to deal with edge cases and errors
that can occur during execution and symfony gives you some simple methods to help you do
the right thing easily.

Modify the showSuccess.php template

The generated showSuccess.php template is not exactly what we need, so we will completely rewrite it.
Open the frontend/modules/question/templates/showSuccess.php file and replace its
content by:

<?php use_helper('Date') ?>

<div class="interested_block">
 <div class="interested_mark">

<?php echo count($question->getInterests()) ?>
 </div>
</div>

<h2><?php echo $question->getTitle() ?></h2>

<div class="question_body">
<?php echo $question->getBody() ?>

</div>

<div id="answers">
<?php foreach ($question->getAnswers() as $answer): ?>
 <div class="answer">
 posted by <?php echo $answer->getUser()->getFirstName().' '.$answer->getUser()->getLastName() ?>
 on <?php echo format_date($answer->getCreatedAt(), 'p') ?>
 <div>

<?php echo $answer->getBody() ?>
 </div>
 </div>
<?php endforeach; ?>
</div>

You recognize here the interested_block div that was already added to the listSuccess.php
template yesterday. It just displays the number of interested users for a given question. After that, the markup
also looks very much like the one of the list, except that there is no link_to on the title. It is just a
rewriting of the initial code to display only the necessary information about a question.

symfony advent calendar

Show the answers to a question 26/202

http://www.php.net/echo
http://www.php.net/count
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo

The new part is the answers div. It displays all the answers to the question (using the simple
$question->getAnswers() Propel method), and for each of them, shows the total relevancy, the name
of the author, and the creation date in addition to the body.

The format_date() is another example of template helpers for which an initial declaration is required.
You can find more about this helper's syntax and other helpers in the internationalization helpers chapter of
the symfony book (these helpers speed up the tedious task of displaying dates in a good looking format).

Note: Propel creates method names for linked tables by adding an 's' automatically at the end
of the table name. Please forgive the ugly ->getRelevancys() method since it saves you
several lines of SQL code.

Add some new test data

It is time to add some data for the answer and relevancy tables at the end of the
data/fixtures/test_data.yml (feel free to add your own):

Answer:
 a1_q1:
 question_id: q1
 user_id: francois
 body: |
 You can try to read her poetry. Chicks love that kind of things.

 a2_q1:
 question_id: q1
 user_id: fabien
 body: |
 Don't bring her to a donuts shop. Ever. Girls don't like to be
 seen eating with their fingers - although it's nice.

 a3_q2:
 question_id: q2
 user_id: fabien
 body: |
 The answer is in the question: buy her a step, so she can
 get some exercise and be grateful for the weight she will
 lose.

 a4_q3:
 question_id: q3
 user_id: fabien
 body: |
 Build it with symfony - and people will love it.

Reload your data with:

$ php batch/load_data.php

Navigate to the action showing the first question to check if the modifications were successful:

http://askeet/frontend_dev.php/question/show/id/XX

symfony advent calendar

Show the answers to a question 27/202

http://www.symfony-project.com/content/book/page/templating_i18n_helpers.html

Note: Replace XX with the current id of your first question.

The question is now displayed in a fancier way, followed by the answers to it. That's better, isn't it?

Modify the model, part I

It is almost certain that the full name of an author will be needed somewhere else in the application. You can
also consider that the full name is an attribute of the User object. This means that their should be a method in
the User model allowing to retrieve the full name, instead of reconstructing it in an action. Let's write it.
Open the askeet/lib/model/User.php and add in the following method:

public function __toString()
{

return $this->getFirstName().' '.$this->getLastName();
}

Why is this method named __toString() instead of getFullName() or something similar? Because
the __toString() method is the default method used by PHP5 for object representation as string. This
means that you can replace the

posted by <?php echo $answer->getUser()->getFirstName().' '.$answer->getUser()->getLastName() ?>

line of the askeet/apps/frontend/modules/question/templates/showSuccess.php
template by a simpler

posted by <?php echo $answer->getUser() ?>

to achieve the same result. Neat, isn't it ?

Don't repeat yourself

One of the good principles of agile development is to avoid duplicating code. It says "Don't Repeat Yourself"
(D.R.Y.). This is because duplicated code is twice as long to review, modify, test and validate than a unique
encapsulated chunk of code. It also makes application maintenance much more complex. And if you paid
attention to the last part of today's tutorial, you probably noticed some duplicated code between the
listSuccess.php template written yesterday and the showSuccess.php template:

symfony advent calendar

Modify the model, part I 28/202

http://www.php.net/echo
http://www.php.net/echo

<div class="interested_block">
 <div class="interested_mark">

<?php echo count($question->getInterests()) ?>
 </div>
</div>

So our first session of refactoring will remove this chunk of code from the two templates and put it in a
fragment, or reusable chunk of code. Create an _interested_user.php file in the
askeet/apps/frontend/modules/question/template/ directory with the following code:

<div class="interested_mark">
<?php echo count($question->getInterests()) ?>

</div>

Then, replace the original code in both templates (listSuccess.php and showSuccess.php) with:

<div class="interested_block">
<?php include_partial('interested_user', array('question' => $question)) ?>

</div>

A fragment doesn't have native access to any of the current objects. The fragment uses a $question
variable, so it has to be defined in the include_partial call. The additional _ in front of the fragment
file name helps to easily distinguish fragments from actual templates in the template/ directories. If you
want to learn more about fragments, read the view chapter of the symfony book.

Modify the model, part II

The $question->getInterests() call of the new fragment does a request to the database and returns
an array of objects of class Interest. This is a heavy request for just a number of interested persons, and it
might load the database too much. Remember that this call is also done in the listSuccess.php template,
but this time in a loop, for each question of the list. It would be a good idea to optimize it.

One good solution is to add a column to the Question table called interested_users, and to update
this column each time an interest about the question is created.

Caution: We are about to modify the model without any apparent way to test it, since there is
currently no way to add Interest records through askeet. You should never modify
something without any way to test it.

Luckily, we do have a way to test this modification, and you will discover it later in this part.

Add a field to the User object model

Go without fear and modify the askeet/config/schema.xml data model by adding to the
ask_question table:

<column name="interested_users" type="integer" default="0" />

Then rebuild the model:

symfony advent calendar

Don't repeat yourself 29/202

http://www.php.net/echo
http://www.php.net/count
http://en.wikipedia.org/wiki/Refactoring
http://www.php.net/echo
http://www.php.net/count
http://www.php.net/array
http://www.symfony-project.com/content/book/page/view.html

$ symfony propel-build-model

That's right, we are already rebuilding the model without worrying about existing extensions to it! This is
because the extension to the User class was made in the askeet/lib/model/User.php, which inherits
from the Propel generated askeet/lib/model/om/BaseUser.php class. That's why you should never
edit the code of the askeet/lib/model/om/ directory: it is overridden each time a build-model is
called. Symfony helps to ease the normal life cycle of model changes in the early stages of any web project.

You also need to update the actual database. To avoid writing some SQL statement, you should rebuild your
SQL schema and reload your test data:

$ symfony propel-build-sql
$ mysql -u youruser -p askeet < data/sql/schema.sql
$ php batch/load_data.php

Note: TIMTOWTDI: There is more than one way to do it. Instead of rebuilding the database,
you can add the new column to the MySQL table by hand:

$ mysql -u youruser -p askeet -e "alter table ask_question add interested_users int default '0'"

Modify the save() method of the Interest object

Updating the value of this new field has to be done each time a user declares its interest for a question, i.e.
each time a record is added to the Interest table. You could implement that with a trigger in MySQL, but
that would be a database dependent solution, and you wouldn't be able to switch to another database as easily.

The best solution is to modify the model by overriding the save() method of the Interest class. This
method is called each time an object of class Interest is created. So open the
askeet/lib/model/Interest.php file and write in the following method:

public function save($con = null)
{

$ret = parent::save($con);

// update interested_users in question table
$question = $this->getQuestion();
$interested_users = $question->getInterestedUsers();
$question->setInterestedUsers($interested_users + 1);
$question->save($con);

return $ret;
}

The new save() method gets the question related to the current interest, and increments its
interested_users field. Then, it does the usual save(), but because a $this->save(); would end
up in an infinite loop, it uses the class method parent::save() instead.

Secure the updating request with a transaction

symfony advent calendar

Modify the model, part II 30/202

What would happen if the database failed between the update of the Question object and the one of the
Interest object? You would end up with corrupted data. This is the same problem met in a bank when a
money transfer means a first request to decrease the amount of an account, and a second request to increase
another account.

If two request are highly dependent, you should secure their execution with a transaction. A transaction is the
insurance that both requests will succeed, or none of them. If something wrong happens to one of the requests
of a transaction, all the previously succeeded requests are cancelled, and the database returns to the state
where it was before the transaction.

Our save() method is a good opportunity to illustrate the implementation of transactions in symfony.
Replace the code by:

public function save($con = null)
{

$con = Propel::getConnection();
 try

{
$con->begin();

$ret = parent::save($con);

// update interested_users in question table
$question = $this->getQuestion();
$interested_users = $question->getInterestedUsers();
$question->setInterestedUsers($interested_users + 1);
$question->save($con);

$con->commit();

return $ret;
}

 catch (Exception $e)
{

$con->rollback();
 throw $e;

}
}

First, the method opens a direct connection to the database through Creole. Between the ->begin() and the
->commit() declarations, the transaction ensures that all will be done or nothing. If something fails, an
exception will be raised, and the database will execute a rollback to the previous state.

Change the template

Now that the ->getInterestedUsers() method of the Question object works properly, it is time to
simplify the _interested_user.php fragment by replacing:

<?php echo count($question->getInterests()) ?>

by

<?php echo $question->getInterestedUsers() ?>

symfony advent calendar

Modify the model, part II 31/202

http://www.php.net/echo
http://www.php.net/count
http://www.php.net/echo

Note: Thanks to our briliant idea to use a fragment instead of leaving duplicated code in the
templates, this modification only needed to me made once. If not, we would have to modify
the listSuccess.php AND showSuccess.php templates, and for lazy folks like us,
that would have been overwhelming.

In terms of number of requests and execution time, this should be better. You can verify it with the number of
database requests indicated in the web debug toolbar, after the database icon. Notice that you can also get the
detail of the SQL queries for the current page by clicking on the database icon itself:

Test the validity of the modification

We'll check that nothing is broken by requesting the show action again, but before that, run again the data
import batch that we wrote yesterday:

$ cd /home/sfprojects/askeet/batch
$ php load_data.php

When creating the records of the Interest table, the sfPropelData object will use the overridden
save() method and should properly update the related User records. So this is a good way to test the
modification of the model, even if there is no CRUD interface with the Interest object built yet.

Check it by requesting the home page and the detail of the first question:

http://askeet/frontend_dev.php/

symfony advent calendar

Modify the model, part II 32/202

http://askeet/frontend_dev.php/question/show/id/XX

The number of interested users didn't change. That's a successful move!

Same for the answers

What was just done for the count($question->getInterests()) could as well be done for the
count($answer->getRelevancys()). The only difference will be that an answer can have positive
and negative votes by users, while a question can only be voted as 'interesting'. Now that you understand how
to modify the model, we can go fast. Here are the changes, just as a reminder. You don't have to copy them by
hand for tomorrow's tutorial if you use the askeet SVN repository.

Add the following columns to the answer table in the schema.xml

<column name="relevancy_up" type="integer" default="0" />
<column name="relevancy_down" type="integer" default="0" />

•

Rebuild the model and update the database accordingly

$ symfony propel-build-model
$ symfony propel-build-sql
$ mysql -u youruser -p askeet < data/sql/schema.sql

•

Override the ->save() method of the Relevancy class in the lib/model/Relevancy.php

public function save($con = null)
{

$con = Propel::getConnection();
 try

{
$con->begin();

$ret = parent::save();

// update relevancy in answer table
$answer = $this->getAnswer();
if ($this->getScore() == 1)
{
$answer->setRelevancyUp($answer->getRelevancyUp() + 1);

}
else
{
$answer->setRelevancyDown($answer->getRelevancyDown() + 1);

}
$answer->save($con);

$con->commit();

return $ret;
}

 catch (Exception $e)
{

•

symfony advent calendar

Same for the answers 33/202

http://svn.askeet.com/tags/release_day_4/

$con->rollback();
 throw $e;

}
}

Add the two following methods to the Answer class in the model:

public function getRelevancyUpPercent()
{

$total = $this->getRelevancyUp() + $this->getRelevancyDown();

return $total ? sprintf('%.0f', $this->getRelevancyUp() * 100 / $total) : 0;
}

public function getRelevancyDownPercent()
{

$total = $this->getRelevancyUp() + $this->getRelevancyDown();

return $total ? sprintf('%.0f', $this->getRelevancyDown() * 100 / $total) : 0;
}

•

Change the part concerning the answers in question/templates/showSuccess.php by:

<div id="answers">
<?php foreach ($question->getAnswers() as $answer): ?>
 <div class="answer">

<?php echo $answer->getRelevancyUpPercent() ?>% UP <?php echo $answer->getRelevancyDownPercent() ?> % DOWN
 posted by <?php echo $answer->getUser()->getFirstName().' '.$answer->getUser()->getLastName() ?>
 on <?php echo format_date($answer->getCreatedAt(), 'p') ?>
 <div>

<?php echo $answer->getBody() ?>
 </div>
 </div>
<?php endforeach; ?>
</div>

•

Add some test data in the fixtures

Relevancy:
 rel1:
 answer_id: a1_q1
 user_id: fabien
 score: 1

 rel2:
 answer_id: a1_q1
 user_id: francois
 score: -1

•

Launch the population batch•
Check the question/show page•

symfony advent calendar

Same for the answers 34/202

http://www.php.net/sprintf
http://www.php.net/sprintf
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo

Routing

Since the beginning of this tutorial, we called the URL

http://askeet/frontend_dev.php/question/show/id/XX

The default routing rules of symfony understand this request as if you had actually requested

http://askeet/frontend_dev.php?module=question&action=show&id=XX

But having a routing system opens up a lot of other possibilities. We could use the title of the questions as the
URL, to be able to require the same page with:

http://askeet/frontend_dev.php/question/what-shall-i-do-tonight-with-my-girlfriend

This would optimize the way the search engines index the pages of the website, and to make the URLs more
readable.

Create an alternate version of the title

First, we need a converted version of the title - a stripped title - to be used as an URL. There's more than one
way to do it, and we will choose to store this alternate title as a new column of the Question table. In the
schema.xml, add the following line to the Question table:

<column name="stripped_title" type="varchar" size="255" />
<unique name="unique_stripped_title">

<unique-column name="stripped_title" />
</unique>

...and rebuild the model and update the database:

$ symfony propel-build-model
$ symfony propel-build-sql
$ mysql -u youruser -p askeet < data/sql/schema.sql

We will soon override the setTitle() method of the Question object so that it sets the stripped title at
the same time.

symfony advent calendar

Routing 35/202

http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Perl

Custom class

But before that, we will create a custom class to actually transform a title into a stripped title, since this
function doesn't really concern specifically the Question object (we will probably also use it for the
Answer object).

Create a new myTools.class.php file under the askeet/lib/ directory:

<?php

class myTools
{
 public static function stripText($text)

{
$text = strtolower($text);

// strip all non word chars
$text = preg_replace('/\W/', ' ', $text);

// replace all white space sections with a dash
$text = preg_replace('/\ +/', '-', $text);

// trim dashes
$text = preg_replace('/\-$/', '', $text);
$text = preg_replace('/^\-/', '', $text);

return $text;
}

}

Now open the askeet/lib/model/Question.php class file and add:

public function setTitle($v)
{
 parent::setTitle($v);

$this->setStrippedTitle(myTools::stripText($v));
}

Notice that the myTools custom class doesn't need to be declared: symfony autoloads it when needed,
provided that it is located in the lib/ directory.

We can now reload our data:

$ symfony cc
$ php batch/load_data.php

If you want to learn more about custom class and custom helpers, read the extension chapter of the symfony
book.

symfony advent calendar

Routing 36/202

http://www.php.net/static
http://www.php.net/strtolower
http://www.php.net/preg_replace
http://www.php.net/preg_replace
http://www.php.net/preg_replace
http://www.php.net/preg_replace
http://www.symfony-project.com/content/book/page/custom_helper.html

Change the links to the show action

In the listSuccess.php template, change the line

<h2><?php echo link_to($question->getTitle(), 'question/show?id='.$question->getId()) ?></h2>

by

<h2><?php echo link_to($question->getTitle(), 'question/show?stripped_title='.$question->getStrippedTitle()) ?></h2>

Now open the actions.class.php of the question module, and change the show action to:

public function executeShow()
{

$c = new Criteria();
$c->add(QuestionPeer::STRIPPED_TITLE, $this->getRequestParameter('stripped_title'));
$this->question = QuestionPeer::doSelectOne($c);

$this->forward404Unless($this->question);
}

Try to display again the list of questions and to access each of them by clicking on their title:

http://askeet/frontend_dev.php/

The URLs correctly display the stripped title of the questions:

http://askeet/frontend_dev.php/question/show/stripped-title/what-shall-i-do-tonight-with-my-girlfriend

Changing the routing rules

But this is not exactly how we wanted them to be displayed. It is now time to edit the routing rules. Open the
routing.yml configuration file (located in the askeet/apps/frontend/config/ directory) and
add the following rule on top of the file:

question:
 url: /question/:stripped_title
 param: { module: question, action: show }

In the url line, the word question is a custom text that will appear in the final URL, while the
stripped_title is a parameter (it is preceded by :). They form a pattern that the symfony routing
system will apply to the links to the question/show action calls - because all the links in our templates use
the link_to() helper.

It is time for the final test: Display again the homepage, click on the first question title. Not only does the first
question show (proving that nothing is broken), but the address bar of your browser now displays:

http://askeet/frontend_dev.php/question/what-shall-i-do-tonight-with-my-girlfriend

If you want to learn more about the routing feature, read the routing policy chapter of the symfony book.

symfony advent calendar

Routing 37/202

http://www.php.net/echo
http://www.php.net/echo
http://www.symfony-project.com/content/book/page/routing.html

See you Tomorrow

Today, the website itself didn't get many new features. However, you saw more template coding, you know
how to modify the model, and the overall code has been refactored in a lot of places.

This happens all the time in the life of a symfony project: the code that can be reused is refactored to a
fragment or a custom class, the code that appears in an action or a template and that actually belongs to the
model is moved to the model. Even if this spreads the code in lots of small files disseminated in lots of
directories, the maintenance and evolution is made easier. In addition, the file structure of a symfony project
makes it easy to find where a piece of code actually lies according to its nature (helper, model, template,
action, custom class, etc.).

The refactoring job done today will speed up the development of the upcoming days. And we will periodically
do some more refactoring in the life of this project, since the way we develop - make a feature work without
worrying about the upcoming functionalities - requires a good structure of code if we don't want to end up
with a total mess.

What's for tomorrow? We will start writing a form and see how to get information from it. We will also split
the list of questions of the home page into pages. In the meantime, feel free to download today's code from the
SVN repository (tagged release_day_4) at:

http://svn.askeet.com/tags/release_day_4/

and to send us any questions using the askeet mailing-list or the dedicated forum.

symfony advent calendar

See you Tomorrow 38/202

mailto:askeet-subscribe@symfony-project.com
http://www.symfony-project.com/forum/index.php/f/8/

symfony advent calendar day five: forms and
pager

Previously on symfony

During the long day four, you got used to refactoring your application by moving chunks of code to other files
more related to their nature. You also learned to modify the model so that common methods related to the data
can be taken out of the action code.

The development is clean, but the number of functionalities is still poor. It is time to allow a bit of
interactivity between the askeet site and its users. And the root of HTML interactivity - besides hyperlinks -
are forms.

The objectives for today are to allow a user to login and to paginate the list of questions on the home page.
This will be quick to develop, but it will allow you to recover from yesterday.

Login form

There are users in the test data, but no way for the application to recognize one. Let's give access to a login
form from every page of the application. Open the global layout
askeet/apps/frontend/templates/layout.php and add in the following line before the link to
about:

<?php echo link_to('sign in', 'user/login') ?>

Note: The current layout places this link just behind the web debug toolbar. To see it, fold the
toolbar by clicking its 'Sf' icon.

It is time to create the user module. While the question module was generated during day two, this time
we will just ask symfony to create the module skeleton, and we will write the code ourselves.

$ symfony init-module frontend user

Note: The skeleton contains a default index action and an indexSuccess.php template.
Get rid of both, since we won't need them.

Create the user/login action

In the user/actions/action.class.php file (under the new
askeet/apps/frontend/modules/ directory), add the following login action:

public function executeLogin()
{

$this->getRequest()->setAttribute('referer', $this->getRequest()->getReferer());

return sfView::SUCCESS;

symfony advent calendar

symfony advent calendar day five: forms and pager 39/202

http://www.php.net/echo

}

The action saves the referrer in a request attribute. It will then be available to the template to be put in a
hidden field, so that the target action of the form can redirect to the original referer after a successful login.

The return sfView::SUCCESS passes the result of the action to the loginSuccess.php template.
This statement is implied in actions that don't contain a return statement, that's why the default template of an
action is called actionnameSuccess.php.

Before working more on the action, let's have a look at the template.

Create the loginSuccess.php template

Many human-computer interactions on the web use forms, and symfony facilitates the creation and the
management of forms by providing a set of form helpers.

In the askeet/apps/frontend/modules/user/templates/ directory, create the following
loginSuccess.php template:

<?php echo form_tag('user/login') ?>

 <fieldset>

 <div class="form-row">
 <label for="nickname">nickname:</label>

<?php echo input_tag('nickname', $sf_params->get('nickname')) ?>
 </div>

 <div class="form-row">
 <label for="password">password:</label>

<?php echo input_password_tag('password') ?>
 </div>

 </fieldset>

<?php echo input_hidden_tag('referer', $sf_request->getAttribute('referer')) ?>
<?php echo submit_tag('sign in') ?>

</form>

This template is your first introduction to the form helpers. These symfony functions help to automate the
writing of form tags. The form_tag() helper opens a form with a default POST behaviour, and points to
the action given as argument. The input_tag() helper produces an <input> tag (that's a surprise) by
automatically adding an id attribute based on the name given as first argument; the default value is taken
from the second argument. You can find more about form helpers and the HTML code they generate in the
related chapter of the symfony book.

The essential thing here is that the action called when the form is submitted (the argument of form_tag())
is the same login action used to display it. So let's go back to the action.

symfony advent calendar

Login form 40/202

http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.symfony-project.com/content/book/page/templating_form_helpers.html

Handle the login form submission

Replace the login action that we just wrote with the following code:

public function executeLogin()
{

if ($this->getRequest()->getMethod() != sfRequest::POST)
{
// display the form
$this->getRequest()->setAttribute('referer', $this->getRequest()->getReferer());

}
else
{

// handle the form submission
$nickname = $this->getRequestParameter('nickname');

$c = new Criteria();
$c->add(UserPeer::NICKNAME, $nickname);
$user = UserPeer::doSelectOne($c);

// nickname exists?
if ($user)
{
// password is OK?
if (true)
{

$this->getUser()->setAuthenticated(true);
$this->getUser()->addCredential('subscriber');

$this->getUser()->setAttribute('subscriber_id', $user->getId(), 'subscriber');
$this->getUser()->setAttribute('nickname', $user->getNickname(), 'subscriber');

// redirect to last page
return $this->redirect($this->getRequestParameter('referer', '@homepage'));

}
}

}
}

The login action will be used both to display the login form and to process it. In consequence, it has to know
in which context it is called. If the action is not called in POST mode, it is because it is requested from a link:
That's the previous case we talked about earlier. If the request is in POST mode, the action is called from a
form and it is time to handle it.

The action gets the value of the nickname field from the request parameters, and requires the User table to
see if this user exists in the database.

Then there will be, in the near future, a control of the password that will grant credentials to the user. For now,
the only thing this action does is to store in a session attribute the id and the nickname of the user.
Eventually, the action redirects to the original referer thanks to the hidden referer field in the form, passed
as a request parameter. If this field is empty, the default value (@homepage, which is the routing rule name
for question/list) is used instead.

symfony advent calendar

Login form 41/202

Notice the difference between the two types of attributes set in this example: The request attributes
($this->getRequest()->setAttribute()) are held for the template and forgotten as soon as the
answer is sent to the referrer. The session attributes ($this->getUser()->setAttribute()) are
kept during the life of the user's session, and other actions will be able to access them again in the future. If
you want to know more about attributes, you should have a look at the parameter holder chapter of the
symfony book.

Grant privileges

It is a good thing that users can log in to the askeet website, but they won't do it just for fun. Login will be
required to post a new question, to declare interest about a question, and to rate a comment. All the other
actions wiil be open to non logged users.

To set a user as authenticated, you need to call the ->setAuthenticated() method of the sfUser
object. This object also provides a credentials mechanism (->addCredential()), to refine access
restriction according to profiles. The user credentials chapter of the symfony book explains all that in detail.

That's the purpose of the two lines:

$this->getContext()->getUser()->setAuthenticated(true);
$this->getContext()->getUser()->addCredential('subscriber');

When the nickname is recognized, not only will the user data put in session attributes, but the user will also be
granted access to restricted parts of the site. We'll see tomorrow how to restrict access of some parts of the
application to authenticated users.

Add the user/logout action

There is one last trick about the ->setAttribute() method: The last argument (subscriber in the
above example) defines the namespace where the attribute will be stored. Not only does a namespace allow a
name already existing in another namespace to be given to an attribute, it also allows the quick removal of all
its attributes with a single command:

public function executeLogout()
{

$this->getUser()->setAuthenticated(false);
$this->getUser()->clearCredentials();

$this->getUser()->getAttributeHolder()->removeNamespace('subscriber');

$this->redirect('@homepage');
}

Using namespaces saved us from removing the two attributes one by one: That's one less line of code. Talk
about laziness!

symfony advent calendar

Login form 42/202

http://www.symfony-project.com/content/book/page/parameter_holder.html
http://www.symfony-project.com/content/book/page/security.html

Update the layout

The layout still shows a 'login' link even if a user is already logged. Let's quickly fix it. In
askeet/apps/frontend/templates/layout.php, change the line that we just added at the
beginning of today's tutorial with:

<?php if ($sf_user->isAuthenticated()): ?>
 <?php echo link_to('sign out', 'user/logout') ?>
 <?php echo link_to($sf_user->getAttribute('nickname', '', 'subscriber').' profile', 'user/profile') ?>
<?php else: ?>
 <?php echo link_to('sign in/register', 'user/login') ?>
<?php endif ?>

It is time to test all this by displaying any page of the application, clicking the 'login' link, entering a valid
nickname ('anonymous' should do the trick) and validating it. If the 'login' link on top of the window changes
to 'sign out', you did everything right. Eventually, try to logout to check if the 'login' links appears again.

You will find more information about the manipulation of user session attributes in the user session chapter of
the symfony book.

Question pager

As thousands of symfony enthusiasts will rush to the askeet site, it is very probable that the list of questions
displayed in the home page will grow very long. To avoid slow requests and excessive scrolling, it is
necessary to paginate the list of questions.

Symfony provides an object just for that purpose: The sfPropelPager. It encapsulates the request to the
database so that only the records to display on the current page are required. For instance, if a pager is
initialized to display 10 records per page, the request to the database will be limited to 10 results, and the
offset set to match the page rank.

Modify the question/list action

During day three, we saw that the list action of the question module was quite succinct:

public function executeList ()
{

$this->questions = QuestionPeer::doSelect(new Criteria());
}

We are going to modify this action to pass a sfPropelPager object to the template instead of an array. In
the same time, we are going to order the questions by number of interests:

public function executeList ()
{

$pager = new sfPropelPager('Question', 2);

symfony advent calendar

Login form 43/202

http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.symfony-project.com/content/book/page/user_session.html

$c = new Criteria();
$c->addDescendingOrderByColumn(QuestionPeer::INTERESTED_USERS);
$pager->setCriteria($c);
$pager->setPage($this->getRequestParameter('page', 1));
$pager->setPeerMethod('doSelectJoinUser');
$pager->init();

$this->question_pager = $pager;
}

The initialization of the sfPropelPager object specifies which class of object it will contain, and the
maximum number of objects that can be put in a page (two in this example). The ->setPage() method
uses a request parameter to set the current page. For instance, if this page parameter has a value of 2, the
sfPropelPager will return the results 3 to 5. The default value of the page request parameter being 1,
this pager will return the results 1 to 2 by default. You will find more information about the
sfPropelPager object and its methods in the pager chapter of the symfony book.

Use a custom parameter

It is always a good idea to put the constants that you use in configuration files. For instance, the number of
results per page (2 in this example) could be replaced by a parameter, defined in your custom application
configuration. Change the new sfPropelPager line above by:

...
$pager = new sfPropelPager('Question', sfConfig::get('app_pager_homepage_max'));

Open the custom application configuration file (askeet/apps/frontend/config/app.yml) and add
in:

all:
 pager:
 homepage_max: 2

The pager key here is used as a namespace, that's why it also appears in the parameter name. You will find
more about custom configuration and the rules to name custom parameters in the configuration chapter of the
symfony book.

Modify the listSuccess.php template

In the listSuccess.php template, just replace the line

<?php foreach($questions as $question): ?>

by

<?php foreach($question_pager->getResults() as $question): ?>

so that the page displays the list of results stored in the pager.

symfony advent calendar

Question pager 44/202

http://www.symfony-project.com/content/book/page/pager.html
http://www.symfony-project.com/content/book/page/configuration.html

Add page navigation

There is one more thing to add to this template: The page navigation. For now, all that the template does is
display the first two questions, but we should add the ability to go to the next page, and then to go back to the
previous page. To do that, append at the end of the template:

<div id="question_pager">
<?php if ($question_pager->haveToPaginate()): ?>

<?php echo link_to('«', 'question/list?page=1') ?>
<?php echo link_to('<', 'question/list?page='.$question_pager->getPreviousPage()) ?>

<?php foreach ($question_pager->getLinks() as $page): ?>
<?php echo link_to_unless($page == $question_pager->getPage(), $page, 'question/list?page='.$page) ?>
<?php echo ($page != $question_pager->getCurrentMaxLink()) ? '-' : '' ?>

<?php endforeach; ?>

<?php echo link_to('>', 'question/list?page='.$question_pager->getNextPage()) ?>
<?php echo link_to('»', 'question/list?page='.$question_pager->getLastPage()) ?>

<?php endif; ?>
</div>

This code takes advantage of the numerous methods of the sfPropelPager object, among which
->haveToPaginate(), which returns true only if the number of results to the request exceeds the page
size; ->getPreviousPage(), ->getNextPage() and ->getLastPage(), which have obvious
meanings; ->getLinks(), which provides an array of page numbers; and ->getCurrentMaxLink(),
which returns the last page number.

This example also shows one handy symfony link helper: link_to_unless() will output a regular
link_to() if the test given as the first argument is false, otherwise the text will be output without a link,
enclosed in a simple .

Did you test the pager? You should. The modification isn't over until you validate it with your own eyes. To
do that, just open the test data file created during day three, and add a few questions for the page navigation to
appear. Relaunch the import data batch and request the homepage again. Voila.

symfony advent calendar

Question pager 45/202

http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo

Add a routing rule for the subsequent pages

By default, the urls of the pages will look like:

http://askeet/frontend_dev.php/question/list/page/XX

Let's take advantage of the routing rules to have those pages understand:

http://askeet/frontend_dev.php/index/XX

Just open the apps/frontend/config/routing.yml file and add at the top:

popular_questions:
 url: /index/:page
 param: { module: question, action: list }

While we are at it, add another routing rule for the login page:

login:
 url: /login
 param: { module: user, action: login }

Refactoring

Model

The question/list action executes code that is closely related to the model, that's why we will move this
code to the model. Replace the question/list action by:

public function executeList ()
{

$this->question_pager = QuestionPeer::getHomepagePager($this->getRequestParameter('page', 1));
}

...and add the following method to the QuestionPeer.php class in lib/model:

public static function getHomepagePager($page)
{

$pager = new sfPropelPager('Question', sfConfig::get('app_pager_homepage_max'));
$c = new Criteria();
$c->addDescendingOrderByColumn(self::INTERESTED_USERS);
$pager->setCriteria($c);
$pager->setPage($page);
$pager->setPeerMethod('doSelectJoinUser');
$pager->init();

return $pager;
}

The same idea applies to the question/show action, written yesterday: The use of Propel objects to
retrieve a question from its stripped title should belong to the model. So change the question/show action

symfony advent calendar

Question pager 46/202

http://www.php.net/static

by:

public function executeShow()
{

$this->question = QuestionPeer::getQuestionFromTitle($this->getRequestParameter('stripped_title'));

$this->forward404Unless($this->question);
}

Add to QuestionPeer.php:

public static function getQuestionFromTitle($title)
{

$c = new Criteria();
$c->add(QuestionPeer::STRIPPED_TITLE, $title);

return self::doSelectOne($c);
}

Templates

The list of question displayed in question/templates/listSuccess.php will be reused somewhere
else in the future. So we will put the template code to display a list of question in a _list.php fragment
and replace the listSuccess.php content by a simple:

<h1>popular questions</h1>

<?php echo include_partial('list', array('question_pager' => $question_pager)) ?>

The content of the _list.php fragment can be seen in the askeet SVN repository.

See you Tomorrow

Login forms and list pagers are used in almost all web applications nowadays. You saw today that they are
quite easy to develop with symfony.

Once again, our day finished by some refactoring. That's the price to pay when you build an application little
by little, without designing the big picture first.

Tomorrow, we will continue to work on the login process, by restricting the access of some parts of the site to
registered users, and we will do some form validation to avoid incorrect submissions.

symfony advent calendar

Refactoring 47/202

http://www.php.net/static
http://www.php.net/echo
http://www.php.net/array
http://svn.askeet.com/tags/release_day_5/

symfony advent calendar day six: security and
form validation

Previously on symfony

During the fifth day, you got used to manipulating templates and actions; forms and pagers have no secrets for
you anymore. But after building the login form, you probably expected us to show you how to restrict access
to non-authorised users for a specific set of functionalities. That's what we are going to do today, together
with some form validation. As we will extend the application with custom classes, you should be comfortable
with the concepts exposed in the custom extension chapter of the symfony book.

Login form validation

Validation file

The login form has a nickname and a password field. But what will happen if a user submits incorrect
data? To be able to handle this case, create a login.yml file in the
/frontend/modules/user/validate directory (login is the name of the action to validate). Add
the following content:

methods:
 post: [nickname, password]

names:
 nickname:
 required: true
 required_msg: your nickname is required
 validators: nicknameValidator

 password:
 required: true
 required_msg: your password is required

nicknameValidator:
 class: sfStringValidator
 param:
 min: 5
 min_error: nickname must be 5 or more characters

First, under the methods header, the list of fields to be validated is defined for the methods of the form (we
only define POST method here because the GET is to display the login form and does not need validation).
Then, under the names header, the requirements for each of the fields to be checked are listed, along with the
corresponding error message. Eventually, as the 'nickname' field is declared to have a specific set of validation
rules, they are detailed under the corresponding header. In this example, the sfStringValidator is a
symfony built-in validator that checks the format of a string (the default symfony validators are exposed in the
how to validate a form of the symfony book).

symfony advent calendar

symfony advent calendar day six: security and form validation 48/202

http://www.symfony-project.com/content/book/page/custom_helper.html
http://www.symfony-project.com/content/book/page/validate_form.html

Error handling

So what is supposed to happen if a user enters wrong data? The conditions written in the login.yml file
will not be met, and the symfony controller will pass the request to the handleErrorLogin() method of
the userActions class - instead of the executeLogin() method, as planned in the form_tag
argument. If this method doesn't exist, the default behaviour is to display the loginError.php template.
That's because the default handleError() method returns:

public function handleError()
{

return sfView::ERROR;
}

That's a whole new template to write. But we'd rather display the login form again, with the error messages
displayed close to the problematic fields. So let's modify the login error behaviour to display, in this case, the
loginSuccess.php template:

public function handleErrorLogin()
{

return sfView::SUCCESS;
}

Note: The naming conventions that link the action name, its return value and the template
file name are exposed in the view chapter of the symfony book.

Template error helpers

Once the loginSuccess.php template is called again, it is time to display the errors. We will use the
form_error() helper of the Validation helper group for that purpose. Change the two form-row
divs of the template to:

<?php use_helper('Validation') ?>

<div class="form-row">
<?php echo form_error('nickname') ?>

 <label for="nickname">nickname:</label>
<?php echo input_tag('nickname', $sf_params->get('nickname')) ?>

</div>

<div class="form-row">
<?php echo form_error('password') ?>

 <label for="password">password:</label>
<?php echo input_password_tag('password') ?>

</div>

The form_error() helper will output the error message defined in the login.yml if an error is declared
in the field given as a parameter.

It is time to test the form validation by trying to enter a nickname of less than 5 characters, or by omitting one
the two fields. The error messages magically display above the concerned fields:

symfony advent calendar

Login form validation 49/202

http://www.symfony-project.com/content/book/page/view.html
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo

The password is now compulsory, but there is no password in the database! That doesn't matter, as soon as
you enter any password, the login will be successful. That's not a very secure process, is it?

Style errors

If you tested the form and got an error, you probably noticed that your errors are not styled the same way as
the ones of the capture above. That's because we defined the styling of the .form_error class (in
web/main.css), which is the default class of the form errors generated by the form_error() helper:

.form_error
{

padding-left: 85px;
color: #d8732f;

}

Authenticate a user

Custom validator

Do you remember yesterday's check about the existence of an entered nickname in the login action? Well,
that sounds like a form validation. This code should be taken out from the action and included into a custom
validator. You think it is complicated? It really isn't. Edit the login.yml validation file as follows:

...
names:
 nickname:
 required: true
 required_msg: your nickname is required
 validators: [nicknameValidator, userValidator]
...
userValidator:
 class: myLoginValidator
 param:
 password: password
 login_error: this account does not exist or you entered a wrong password

We just added a new validator for the nickname field, of class myLoginValidator. This validator
doesn't exist yet, but we know that it will need the password to fully authenticate the user, so it is passed as a
parameter with the label password.

symfony advent calendar

Login form validation 50/202

Password storage

But wait a minute. In our data model, as well as in the test data, there is no password set. It is time to define
one. But you know that storing a password in clear text, in a database, is a bad idea for security reasons. So we
will store a sha1 hash of the password as well as the random key used to hash it. If you are not familiar with
this 'salt' process, check out the password cracking practices.

So open the schema.xml and add the following columns to the User table:

<column name="email" type="varchar" size="100" />
<column name="sha1_password" type="varchar" size="40" />
<column name="salt" type="varchar" size="32" />

Rebuild the Propel model by a symfony propel-build-model. You should also add the two columns
to the database, either manually or by using the schema.sql generated after a symfony
propel-build-sql. Now open the askeet/lib/model/User.php and add this setPassword()
method:

public function setPassword($password)
{

$salt = md5(rand(100000, 999999).$this->getNickname().$this->getEmail());
$this->setSalt($salt);
$this->setSha1Password(sha1($salt.$password));

}

This function simulates a direct password storage, but instead it stores the salt random key (a 32 characters
hashed random string) and the hashed password (a 40 characters string).

Add password in the test data

Remember the day three test data file? It is time to add a password and an email to the test users. Open and
modify the askeet/data/fixtures/test_data.yml as follows:

User:
 ...
 fabien:
 nickname: fabpot
 first_name: Fabien
 last_name: Potencier
 password: symfony
 email: fp@example.com

 francois:
 nickname: francoisz
 first_name: FranÃ§ois
 last_name: Zaninotto
 password: adventcal
 email: fz@example.com

As the setPassword() method was defined for the User class, the sfPropelData object will correctly
populate the new sha1_password and salt columns defined in the schema when we call:

symfony advent calendar

Authenticate a user 51/202

http://en.wikipedia.org/wiki/SHA_hash_functions
http://en.wikipedia.org/wiki/Password_cracking
http://www.php.net/md5
http://www.php.net/rand
http://www.php.net/sha1

$ php batch/load_data.php

Note: Notice that the sfPropelData object is able to deal with methods that are not bind
to 'real' database column (and now we overtake your traditional SQL dump!).

If you wonder how this is possible, take a look at the database population chapter of the
symfony book.

Note: There is no need to define a password for the 'Anonymous Coward' user since we will
forbid him to login. And we would really appreciate that you didn't try the two passwords
given here on our bank accounts, since they are confidential!

Custom validator

Now it is time to write this custom myLoginValidator. You can create it in anyone of the lib/
directories that are accessible to the module (that is, in askeet/lib/, or in
askeet/apps/frontend/lib/, or in askeet/apps/frontend/modules/user/lib/). For
now, it is considered to be an application-wide validator, so the myLoginValidator.class.php will be
created in the askeet/apps/frontend/lib/ directory:

<?php

class myLoginValidator extends sfValidator
{
 public function initialize($context, $parameters = null)

{
// initialize parent

 parent::initialize($context);

// set defaults
$this->setParameter('login_error', 'Invalid input');

$this->getParameterHolder()->add($parameters);

return true;
}

 public function execute(&$value, &$error)
{

$password_param = $this->getParameter('password');
$password = $this->getContext()->getRequest()->getParameter($password_param);

$login = $value;

// anonymous is not a real user
if ($login == 'anonymous')
{
$error = $this->getParameter('login_error');
return false;

}

$c = new Criteria();
$c->add(UserPeer::NICKNAME, $login);
$user = UserPeer::doSelectOne($c);

symfony advent calendar

Authenticate a user 52/202

http://www.symfony-project.com/content/book/page/populate.html

// nickname exists?
if ($user)
{
// password is OK?
if (sha1($user->getSalt().$password) == $user->getSha1Password())
{
$this->getContext()->getUser()->setAuthenticated(true);
$this->getContext()->getUser()->addCredential('subscriber');

$this->getContext()->getUser()->setAttribute('subscriber_id', $user->getId(), 'subscriber');
$this->getContext()->getUser()->setAttribute('nickname', $user->getNickname(), 'subscriber');

return true;
}

}

$error = $this->getParameter('login_error');
return false;

}
}

When the validator is required - after the login form submission - the initialize() method is called
first. It initiates the default value of the login_error message ('Invalid Input') and merges the parameters
(the ones under the param: header in the login.yml file) into the parameter holder object.

Then the execute() method is... executed. The $password_param is the field name provided in the
login.yml under the password header. It is used as a field name to retrieve a value from the request
parameters. So $password contains the password entered by the user. $value takes the value of the
current field - and the myLoginValidator class is called for the nickname field. So $login contains
the nickname entered by the user. At last! Now the validator has all the necessary data to actually validate the
user.

The following code was taken off the login action. But in addition, the test of the password validity
(previously always true) is implemented: A hash of the password entered by the user (using the salt stored in
the database) is compared to the hashed password of the user.

If the login and the password are correct, the validator returns true and the target action of the form
(executeLogin()) will be executed. If not, it returns false and it's the handleErrorLogin() that
will be executed.

Remove the code from the action

Now that all the validation code is located inside the validator, we need to remove it from the login action.
Indeed, when the action is called with the POST method, it means that the validator validated the request, so
the user is correct. It means that the only thing that the action has to do in this case is to redirect to the
referer page:

public function executeLogin()
{

if ($this->getRequest()->getMethod() != sfRequest::POST)
{

symfony advent calendar

Authenticate a user 53/202

http://www.php.net/sha1

// display the form
$this->getRequest()->getParameterHolder()->set('referer', $this->getRequest()->getReferer());

return sfView::SUCCESS;
}
else
{
// handle the form submission
// redirect to last page
return $this->redirect($this->getRequestParameter('referer', '@homepage'));

}
}

Test the modifications by trying to login with one of the test users (after clearing the cache, since we created a
new validator class that needs to be autoloaded).

Restrict access

If you want to restrict access to an action, you just need to add a security.yml in the module config/
directory, like the following:

all:
 is_secure: on
 credentials: subscriber

The actions of such a module will only be executed if the user is authenticated, and a has subscriber
credential.

In askeet, login will be required to post a new question, to declare interest about a question, and to rate a
comment. All the other actions wiil be open to non logged users.

For instance, to restrict the access of the question/add action (yet to be written), add the following
security.yml file in the askeet/apps/frontend/modules/question/config/ directory:

add:
 is_secure: on
 credentials: subscriber

all:
 is_secure: off

How about a bit of refactoring?

The day is almost finished, but we would like to play our favorite game for a little while: The
move-the-code-to-an-unlikely-place game.

The four lines of code that are executed when the password is validated grant access to the user and save his
id for future requests. You could see it as a method of the myUser class (the session class, not the User
class corresponding to the User column). That's easy to do. Add the following methods to the
askeet/apps/frontend/lib/myUser.php class:

symfony advent calendar

Restrict access 54/202

public function signIn($user)
{

$this->setAttribute('subscriber_id', $user->getId(), 'subscriber');
$this->setAuthenticated(true);

$this->addCredential('subscriber');
$this->setAttribute('nickname', $user->getNickname(), 'subscriber');

}

public function signOut()
{

$this->getAttributeHolder()->removeNamespace('subscriber');

$this->setAuthenticated(false);
$this->clearCredentials();

}

Now, change the four lines starting by $this->getContext()->getUser() in the
myLoginValidator class with:

$this->getContext()->getUser()->signIn($user);

And also change the user/logout action (did you forget about this one?) by:

public function executeLogout()
{

$this->getUser()->signOut();

$this->redirect('@homepage');
}

The subscriber_id and nickname session attributes could also be abstracted through a getter method.
Still in the myUser class, add the three following methods:

public function getSubscriberId()
{

return $this->getAttribute('subscriber_id', '', 'subscriber');
}

public function getSubscriber()
{

return UserPeer::retrieveByPk($this->getSubscriberId());
}

public function getNickname()
{

return $this->getAttribute('nickname', '', 'subscriber');
}

You can use one of these new methods in the layout.php: change the line

<?php echo link_to($sf_user->getAttribute('nickname', '', 'subscriber').' profile', 'user/profile') ?>

by

symfony advent calendar

How about a bit of refactoring? 55/202

http://www.php.net/echo

<?php echo link_to($sf_user->getNickname().' profile', 'user/profile') ?>

Don't forget to test the modifications. The same login process as previously should still work - but now with
better code.

See you Tomorrow

Tomorrow, it will be time to work a bit on the view configuration, to customize CSS, consistent components,
and to take care of the page headers.

Don't forget that you can still download today's full code from the askeet SVN repository, tagged
release_day_6. If you feel like asking or answering questions about askeet, feel free to pay a visit to the
askeet forum. Don't forget that the program of the 21st day is still up to you.

symfony advent calendar

See you Tomorrow 56/202

http://www.php.net/echo
http://svn.askeet.com/tags/release_day_6/
http://www.symfony-project.com/forum/index.php/f/8/

symfony advent calendar day seven: model and
view manipulation

Previously on symfony

It has already been six days, and some of you may be thinking that the application is not very useful so far.
That is because some consider the usefulness of an application by the number of pages available, and they see
that askeet can only display a list of questions, display the answers to it, and handle user sessions.

The reason why we don't give so much importance to the number of pages is because it is so easy to add new
pages with symfony. You want proof? Ok, today we will display a list of the last questions asked and a list of
the last answers posted, a list of users interested in a question, the profile of a user, and we will add a
navigation bar on every page to access these features. Because that wouldn't be much work for an hour, we
will also setup the view configuration and have a look at what has been done during this week. Ready? Let's
go.

Prefactoring

So, we are going to add paginated lists with pagination controls similar to the ones in
question/templates/_list.php. We don't like to repeat ourselves, so we will extract the pagination
code from this partial into a custom helper. A helper is a PHP function made accessible to the templates (just
like the link_to() and format_date() helpers).

Create a GlobalHelper.php in askeet/apps/frontend/lib/helper and add in:

<?php

function pager_navigation($pager, $uri)
{

$navigation = '';

if ($pager->haveToPaginate())
{
$uri .= (preg_match('/\?/', $uri) ? '&' : '?').'page=';

// First and previous page
if ($pager->getPage() != 1)
{
$navigation .= link_to(image_tag('first.gif', 'align=absmiddle'), $uri.'1');
$navigation .= link_to(image_tag('previous.gif', 'align=absmiddle'), $uri.$pager->getPreviousPage()).' ';

}

// Pages one by one
$links = array();
foreach ($pager->getLinks() as $page)
{

$links[] = link_to_unless($page == $pager->getPage(), $page, $uri.$page);
}
$navigation .= join(' ', $links);

symfony advent calendar

symfony advent calendar day seven: model and view manipulation 57/202

http://www.php.net/preg_match
http://www.php.net/array
http://www.php.net/join

// Next and last page
if ($pager->getPage() != $pager->getCurrentMaxLink())
{
$navigation .= ' '.link_to(image_tag('next.gif', 'align=absmiddle'), $uri.$pager->getNextPage());
$navigation .= link_to(image_tag('last.gif', 'align=absmiddle'), $uri.$pager->getLastPage());

}

}

return $navigation;
}

The pagination navigation helper improves the code we previously wrote: it can use any routing rule, doesn't
display the 'previous' links for the first page nor the 'next' links for the last page. We also added four new
images (first.gif, previous.gif, next.gif and last.gif) to make the links look prettier. Grab
them from the askeet SVN repository. You will probaby reuse this helper in the future for your own projects.

To use this helper in the question/templates/_list.php fragment, call the helper function as
follows:

<?php use_helpers('Text', 'Global') ?>

<?php foreach($question_pager->getResults() as $question): ?>
 <div class="question">
 <div class="interested_block">

<?php include_partial('interested_user', array('question' => $question)) ?>
 </div>

 <h2><?php echo link_to($question->getTitle(), 'question/show?stripped_title='.$question->getStrippedTitle()) ?></h2>

 <div class="question_body">
<?php echo truncate_text($question->getBody(), 200) ?>

 </div>
 </div>
<?php endforeach; ?>

<div id="question_pager">
<?php echo pager_navigation($question_pager, 'question/list') ?>

</div>

Notice the addition of the 's' in the use_helpers() call at the beginning, since we now need more than one
helper. The name Global refers to the GlobalHelper.php file we just created.

Check that everything works as before by requesting:

http://askeet/frontend_dev.php/

symfony advent calendar

Prefactoring 58/202

http://svn.askeet.com/tags/release_day_7/web/home/production/sfweb/web/images/
http://www.php.net/array
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo

List of the recent questions

In the question module, create a new action recent:

public function executeRecent()
{

$this->question_pager = QuestionPeer::getRecentPager($this->getRequestParameter('page', 1));
}

That's as simple as that. We consider that the ability to grab the latest questions should be a method of the
QuestionPeer class. The -Peer classes are dedicated to return lists of objects of a given class - this is
explained in detail in the model chapter of the symfony book. But the getRecent() class method still has
to be created. Open the askeet/lib/model/QuestionPeer.php class and add in:

public static function getRecentPager($page)
{

$pager = new sfPropelPager('Question', sfConfig::get('app_pager_homepage_max'));
$c = new Criteria();
$c->addDescendingOrderByColumn(self::CREATED_AT);
$pager->setCriteria($c);
$pager->setPage($page);
$pager->setPeerMethod('doSelectJoinUser');
$pager->init();

return $pager;
}

The creation date descending order criteria will select the latest questions. This method uses self instead of
parent because it is a class function, not an object function. The reason why we do a
doSelectJoinUser() here instead of a simple doSelect() is because we know that the template will
need the details of the question's author. That would mean a first request for the list of questions, plus one
request per question to get the related user. The doSelectJoinUser() method does all that in only one
request: when we ask

symfony advent calendar

List of the recent questions 59/202

http://www.symfony-project.com/content/book/page/model.html
http://www.php.net/static

$question->getUser();

...there is no request sent to the database. The joinUser allows us to reduce the number of requests from 1
+ the number of questions to only 1. The database will thank us for this easy optimization.

The Propel documentation will give you all the explanations about this great feature.

The template of the list of recent questions will look a lot like the list of questions displayed in the homepage.
Create the askeet/apps/frontend/module/question/templates/recentSuccess.php
with:

<h1>recent questions</h1>

<?php include_partial('list', array('question_pager' => $question_pager)) ?>

You now understand why we refactored the question list into a fragment during day five. Finally, you need to
add a recent_questions rule in the frontend/config/routing.yml configuration file, as
exposed during day four:

recent_questions:
 url: /recent/:page
 param: { module: question, action: recent, page: 1 }

But wait: the question/_list fragment creates links with the routing rule question/list, so using it
will not work for the recent questions list. We need to have the routing rule passed as a parameter to the
fragment so that it can be reused for various pagers. So change the final line of recentSuccess.php to:

<?php include_partial('list', array('question_pager' => $question_pager, 'rule' => 'question/recent')) ?>

and also change the final lines of the _list.php fragment to:

<div id="question_pager">
<?php echo pager_navigation($question_pager, $rule) ?>

</div>

Don't forget to also add the rule parameter in the call to the _list fragment in
modules/question/templates/listSuccess.php.

<h1>popular questions</h1>

<?php echo include_partial('list', array('question_pager' => $question_pager, 'rule' => 'question/list')) ?>

Clear the cache (the configuration was modified), and that's it.

To display the list of latest questions, type in your browser URL bar:

http://askeet/recent

symfony advent calendar

List of the recent questions 60/202

http://propel.phpdb.org/docs/user_guide/
http://www.php.net/array
http://www.php.net/array
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/array

List of the recent answers

It is pretty much the same thing as above, so we will be quite straightforward on this one:

Create an answer module:

$ symfony init-module frontend answer

•

Create a new action recent:

public function executeRecent()
{

$this->answer_pager = AnswerPeer::getRecentPager($this->getRequestParameter('page', 1));
}

•

Extend the AnswerPeer class:

public static function getRecentPager($page)
{

$pager = new sfPropelPager('Answer', sfConfig::get('app_pager_homepage_max'));
$c = new Criteria();
$c->addDescendingOrderByColumn(self::CREATED_AT);
$pager->setCriteria($c);
$pager->setPage($page);
$pager->setPeerMethod('doSelectJoinUser');
$pager->init();

return $pager;
}

•

Create a new recentSuccess.php template:

<?php use_helpers('Date', 'Global') ?>

<h1>recent answers</h1>

•

symfony advent calendar

List of the recent answers 61/202

http://www.php.net/static

<div id="answers">
<?php foreach ($answer_pager->getResults() as $answer): ?>
 <div class="answer">
 <h2><?php echo link_to($answer->getQuestion()->getTitle(), 'question/show?stripped_title='.$answer->getQuestion()->getStrippedTitle()) ?></h2>

<?php echo count($answer->getRelevancys()) ?> points
 posted by <?php echo link_to($answer->getUser(), 'user/show?id='.$answer->getUser()->getId()) ?>
 on <?php echo format_date($answer->getCreatedAt(), 'p') ?>
 <div>

<?php echo $answer->getBody() ?>
 </div>
 </div>
<?php endforeach ?>
</div>

<div id="question_pager">
<?php echo pager_navigation($answer_pager, 'answer/recent') ?>

</div>

Test it in your browser:

http://askeet/answer/recent

•

You are getting used to it, aren't you?

Note: Those who paid attention to the day 4 probably recognized the chunk of code used to
show the details of an answer. Since this code is used in at least two places, we will refactor it
and create an _answer.php partial, to be used both in question/show and
answer/recent. Details are to be found in the askeet SVN repository.

User profile

The user name in a an answer will link to a user/show action yet to be written. This will be the user profile,
and it will display the latest questions and answers contributed, as well as a few details about the user.

symfony advent calendar

User profile 62/202

http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/count
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://svn.askeet.com/tags/release_day_7/apps/frontend/modules/answer/templates/

The first thing to do is to create the action:

public function executeShow()
{

$this->subscriber = UserPeer::retrieveByPk($this->getRequestParameter('id', $this->getUser()->getSubscriberId()));
$this->forward404Unless($this->subscriber);

$this->interests = $this->subscriber->getInterestsJoinQuestion();
$this->answers = $this->subscriber->getAnswersJoinQuestion();
$this->questions = $this->subscriber->getQuestions();

}

The ->getInterestsJoinQuestion() and ->getAnswersJoinQuestion() methods are native
methods of the User class. You can inspect the askeet/lib/model/om/BaseUser.php class to see
how they work.

The askeet/apps/frontend/modules/user/templates/showSuccess.php template should
not give you any problem:

<h1><?php echo $subscriber ?>'s profile</h1>

<h2>Interests</h2>

<?php foreach ($interests as $interest): $question = $interest->getQuestion() ?>
 <?php echo link_to($question->getTitle(), 'question/show?stripped_title='.$question->getStrippedTitle()) ?>
<?php endforeach; ?>

<h2>Contributions</h2>

<?php foreach ($answers as $answer): $question = $answer->getQuestion() ?>

 <?php echo link_to($question->getTitle(), 'question/show?stripped_title='.$question->getStrippedTitle()) ?>

 <?php echo $answer->getBody() ?>

<?php endforeach; ?>

<h2>Questions</h2>

<?php foreach ($questions as $question): ?>
 <?php echo link_to($question->getTitle(), 'question/show?stripped_title='.$question->getStrippedTitle()) ?>
<?php endforeach; ?>

Of course, you could wish to limit the number of result returned by each of the
->getInterestsJoinQuestion(), ->getAnswersJoinQuestion() and getQuestion()
methods of the User object, as well as the sorting order. It is simply done by overriding these methods in the
askeet/lib/model/User.php class file, and we won't disclose here how to do it - but today's release
will include it.

symfony advent calendar

User profile 63/202

http://www.php.net/echo

It is time for the final test. Let's see what the first user did:

http://askeet/user/show/id/1

Now we can also link to a user profile from a question. Add the following line to
question/templates/showSuccess.php and question/templates/_list.php at the
beginning of the question_body div:

<div>asked by <?php echo link_to($question->getUser(), 'user/show?id='.$question->getUser()->getId()) ?> on <?php echo format_date($question->getCreatedAt(), 'f') ?></div>

Don't forget to declare the use of the Date helper in _list.php.

Add a navigation bar

We will change the global layout to add a lateral bar. This bar will contain dynamic content, but as we want to
settle its position in the layout, it can't be part of each template. In addition, putting the code of the bar in the
template would mean repeating it a lot, and you know we don't like to do that.

That's why the bar will be a component. A component is the result of an action (i.e. the HTML code resulting
from the template execution) made available in a variable. The view chapter of the symfony book explains
what a component is, and the differences between a component and a fragment.

Add the component in the layout

Open the global layout (askeet/apps/frontend/templates/layout.php). Do you remember this
part of code:

<div id="content_bar">
 <!-- Nothing for the moment -->
 <div class="verticalalign"></div>

symfony advent calendar

Add a navigation bar 64/202

http://www.php.net/echo
http://www.php.net/echo
http://www.symfony-project.com/content/book/page/view.html

</div>

Replace the comment by

<?php include_component_slot('sidebar') ?>

And that's it.

Define what action goes into the component

We decided to use something a little more powerful than a simple component: a component slot. It is a
component whose action can be modified according to the caller action - allowing contextual content. It's the
view configuration (written in a view.yml file) that defines which action corresponds to a component slot:

default:
 components:
 sidebar: [sidebar, default]

In this example, the component slot named sidebar is declared to be the result of the default action of
the sidebar module.

The view configuration can be defined for the whole application (in the
askeet/apps/frontend/config/ directory) or specifically for a module (in a
askeet/apps/frontend/modules/mymodule/config/ directory). For our case, we will define it
for the whole application, and override it when necessary to provide context-specific links in the sidebar.

So open the askeet/apps/frontend/config/view.yml and add in the component slot
configuration shown above. You will find more information about the view configuration in the related
chapter of the symfony book.

Write the sidebar/default action and template

First, we will let symfony initialize the new sidebar module:

$ symfony init-module frontend sidebar

Next, we need to write a default component. In the
askeet/apps/frontend/modules/sidebar/actions/ directory, rename
actions.class.php into components.class.php, and change its content by:

<?php

class sidebarComponents extends sfComponents
{
 public function executeDefault()

{
}

}

symfony advent calendar

Add a navigation bar 65/202

http://www.symfony-project.com/content/book/page/templating_configuration.html
http://www.symfony-project.com/content/book/page/templating_configuration.html

A component view is a template, just like for an action. The difference is in the naming: A component view is
named like a fragment (starting with _) rather than like a regular template (ending with Success). So create
a askeet/apps/frontend/modules/sidebar/templates/_default.php fragment (and
erase the indexSuccess.php that will not be used) with the following content:

<?php echo link_to('ask a new question', 'question/add') ?>

 <?php echo link_to('popular questions', 'question/list') ?>
 <?php echo link_to('latest questions', 'question/recent') ?>
 <?php echo link_to('latest answers', 'answer/recent') ?>

If you try to navigate in any page of your askeet website now, you might get an error. That's because you are
navigating the site in the production environment, where the configuration is cached and not parsed at each
request. We modified the view.yml configuration file, but the actions in the production environment don't
see it. They use the cached version - the one that doesn't contain the component slot configuration. If you want
to see the changes, either clear the cache or navigate in the development environment:

$ symfony clear-cache

or

http://askeet/frontend_dev.php/

The navigation bar is correctly displayed on every page

Note: This is a general effect of the production environment configuration. So you need to
remember to use the development environment during the development phase (when you
change the configuration a lot), and clear the cache when you navigate in the production
environment after each change in the configuration.

symfony advent calendar

Add a navigation bar 66/202

http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo

A little more view configuration

While we are at it, let's have a look at the application view.yml configuration file in apps/config/:

default:
 http_metas:
 content-type: text/html; charset=utf-8

 metas:
 title: symfony project
 robots: index, follow
 description: symfony project
 keywords: symfony, project
 language: en

 stylesheets: [main, layout]

 javascripts: []

 has_layout: on
 layout: layout

 components:
 sidebar: [sidebar, default]

The metas section contains a configuration for the meta tags of the whole site. The title key also defines
the title that is displayed in the title bar of the browser window. This title is very important, because it is the
first thing that a user sees of the site if it is found by a search index. It is therefore necessary to change it to
something more adapted to the askeet site:

 metas:
 title: askeet! ask questions, find answers
 robots: index, follow
 description: askeet!, a symfony project built in 24 hours
 keywords: symfony, project, askeet, php5, question, answer
 language: en

Refresh the current page. If you don't see any change, that's because you are in the production environment,
and you should clear the cache first, to get the proper window title:

Note: In addition to providing a default title for your project pages, symfony creates a default
robots.txt and favicon.ico in the web root directory (askeet/web/). Don't forget
to change them also!

Note: You might need to change the title for each page of your site. You can do that by
defining a custom view.yml configuration for each module, but that would only let you
give static titles. Alternatively, you can use a dynamic value from an action with the
->setTitle() method, as described in the view configuration chapter:

 [php]

symfony advent calendar

A little more view configuration 67/202

http://www.symfony-project.com/content/book/page/templating_configuration.html

 $this->getResponse()->setTitle($title);

Look at what we have done

It is a general tradition to stop and look at what you've done when you reach the seventh day. That's a good
opportunity to document a few things, including the current data model and the available actions.

As a matter of fact, you should document your code while you write it, for instance using PHP doc-style
comments for each method. The thing with a symfony project is that the names used in the methods or
functions often serve as an explanation of their purpose and use. The methods are kept short, and so are very
readable. Most of the time, the templates only use foreach and if statements that are pretty
self-explanatory. That's why the code you will find in the askeet SVN repository doesn't contain much
documentation - plus the fact that we've already written seven hours worth of explanations about the work
we've done!

Now let's have a look at the updated entity relationship diagram:

The list of available actions is the following:

answer/
 recent
question/
 list
 show
 recent
sidebar/
 default (component)
user/
 show
 login
 logout
 handleErrorLogin

The model also contains the following methods:

symfony advent calendar

Look at what we have done 68/202

http://www.phpdoc.org/
http://svn.askeet.com/

Anwser()
 getRelevancyUpPercent()
 getRelevancyDownPercent()
AnswerPeer::
 getRecentPager()
Interest->
 save()
Question->
 setTitle()
QuestionPeer::
 getQuestionFromTitle()
 getHomepagePager()
 getRecentPager()
Relevancy
 save()
User->
 __toString()
 setPassword()

myUser->
 signIn()
 signOut()
 getSubscriberId()
 getSubscriber()
 getNickName()

...plus a custom tools class and a custom validator, placed in the askeet/apps/frontend/lib/
directory.

That's not bad for seven hours, is it?

See you Tomorrow

The application progressed a lot today, and it was quite fast to do. Everything is now prepared to inject some
AJAX in the human-computer interaction. Tomorrow, users will be able to login and to declare their interest
for a question using AJAX. Don't miss it!

You can still download today's full code from the askeet SVN repository, tagged release_day_7. The
askeet mailing-list will answer any of your questions faster than lightspeed.

symfony advent calendar

See you Tomorrow 69/202

http://svn.askeet.com/tags/release_day_7/
mailto:askeet-subscribe@symfony-project.com

symfony advent calendar day eight: AJAX
interactions

Previously on symfony

After seven hours of work, the askeet application has advanced well. The home page displays a list of
questions, the detail of a question shows its answers, users have a profile page, and thematic lists are available
from every page in the sidebar. Our community-enhanced FAQ is in the right direction (see the list of actions
available as of yesterday), and yet the users cannot alter the data for now.

If the base of data manipulation in the web has long been forms, today the AJAX techniques and usability
enhancements can change the way an application is built. And that applies to askeet, too. This tutorial will
show you how to add AJAX-enhanced interactions to askeet. The objective is to allow a registered user to
declare its interest about a question.

Add an indicator in the layout

While an asynchronous request is pending, users of an AJAX-powered website don't have any of the usual
clues that their action was taken into account and that the result will soon be displayed. That's why every page
containing AJAX interactions should be able to display an activity indicator.

For that purpose, add at the top of the <body> of the global layout.php:

<div id="indicator" style="display: none"></div>

Although hidden by default, this <div> will be displayed when an AJAX request is pending. It is empty, but
the main.css stylesheet (stored in the askeet/web/css/ directory) gives it shape and content:

div#indicator
{

position: absolute;
width: 100px;
height: 40px;
left: 10px;
top: 10px;
z-index: 900;
background: url(/home/production/sfweb/web/images/indicator.gif) no-repeat 0 0;

}

Add an AJAX interaction to declare interest

An ajax interaction is made up of three parts: a caller (a link, a button or any control that the user manipulates
to launch the action), a server action, and a zone in the page to display the result of the action to the user.

symfony advent calendar

symfony advent calendar day eight: AJAX interactions 70/202

Caller

Let's go back to the questions displayed. If you remember the day four, a question can be displayed in the lists
of questions and in the detail of a question.

That's why the code for the question title and interest block was refactored into a
_interested_user.php fragment. Open this fragment again, add a link to allow users to declare their
interest:

<?php use_helper('User') ?>

<div class="interested_mark" id="mark_<?php echo $question->getId() ?>">
<?php echo $question->getInterestedUsers() ?>

</div>

<?php echo link_to_user_interested($sf_user, $question) ?>

This link will do more than just redirect to another page. As a matter of fact, if a user already declared his/her
interest about a given question, he/she must not be able to declare it again. And if the user is not
authenticated... well, we will see this case later.

The link is written in a helper function, that needs to be created in a
askeet/apps/frontend/lib/helper/UserHelper.php:

<?php

use_helper('Javascript');

function link_to_user_interested($user, $question)
{

if ($user->isAuthenticated())
{
$interested = InterestPeer::retrieveByPk($question->getId(), $user->getSubscriberId());
if ($interested)
{

symfony advent calendar

Add an AJAX interaction to declare interest 71/202

http://www.php.net/echo
http://www.php.net/echo

// already interested
return 'interested!';

}
else
{
// didn't declare interest yet
return link_to_remote('interested?', array(

'url' => 'user/interested?id='.$question->getId(),
'update' => array('success' => 'block_'.$question->getId()),
'loading' => "Element.show('indicator')",
'complete' => "Element.hide('indicator');".visual_effect('highlight', 'mark_'.$question->getId()),

));
}

}
else
{

return link_to('interested?', 'user/login');
}

}

?>

The link_to_remote() function is the first component of an AJAX interaction: The caller. It declares
which action must be requested when a user clicks on the link (here: user/interested) and which zone
of the page must be updated with the result of the action (here: the element of id block_XX). Two event
handlers (loading and complete) are added and associated to prototype javascript functions. The
prototype library offers very handy javascript tools to apply visual effects in a web page with simple function
calls. Its only fault is the lack of documentation, but the source is pretty straightforward.

We chose to use a helper instead of a partial because this function contains much more PHP code than HTML
code.

Don't forget to add the id id="block_<?php echo $question->getId() ?>" to the
question/_list fragment.

<div class="interested_block" id="block_<?php echo $question->getId() ?>">
<?php include_partial('interested_user', array('question' => $question)) ?>

</div>

Note: This will only work if you properly defined the sf alias in your web server
configuration, as explained during day one.

Result zone

The update attribute of the link_to_remote() javascript helper specifies the result zone. In this case,
the result of the user/interested action will replace the content of the element of id block_XX. If you
are confused, take a look at what the integration of the fragment in the templates will render:

...
<div class="interested_block" id="block_<?php echo $question->getId() ?>">
 <!-- between here -->

<?php use_helper('User') ?>
 <div class="interested_mark" id="mark_<?php echo $question->getId() ?>">

symfony advent calendar

Add an AJAX interaction to declare interest 72/202

http://www.php.net/array
http://www.php.net/array
http://prototype.conio.net/
http://www.php.net/array

<?php echo $question->getInterestedUsers() ?>
 </div>

<?php echo link_to_user_interested($sf_user, $question) ?>
 <!-- and there -->
</div>
...

The result zone is the part between the two comments. The action, once executed, will replace this content.

The interest of the second id (mark_XX) is purely visual. The complete event handler of the
link_to_remote helper highlights the interested_mark <div> of the clicked interest... after the
action returns an incremented number of interest.

Server action

The AJAX caller points to a user/interested action. This action must create a new record in the
Interest table for the current question and the current user. Here is how to do it with symfony:

public function executeInterested()
{

$this->question = QuestionPeer::retrieveByPk($this->getRequestParameter('id'));
$this->forward404Unless($this->question);

$user = $this->getUser()->getSubscriber();

$interest = new Interest();
$interest->setQuestion($this->question);
$interest->setUser($user);
$interest->save();

}

Remember that the ->save() method of the Interest object was modified to increment the
interested_user field of the related User. So the number of interested users about the current question
will be magically incremented on screen after the call of the action.

And what should the resulting interestedSuccess.php template display?

<?php include_partial('question/interested_user', array('question' => $question)) ?>

It displays the _interested_user.php fragment of the question module again. That's the greatest
interest of having written this fragment in the first place.

We also have to disable layout for this template (modules/user/config/view.yml):

interestedSuccess:
 has_layout: off

Final test

The development of the AJAX interest is now over. You can test it by entering an existing login/password in
the login page, displaying the quesiton list and then clicking an 'interested?' link. The indicator appears while

symfony advent calendar

Add an AJAX interaction to declare interest 73/202

http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/array

the request is passed to the server. Then, the number is incremented in a highlight when the server answers.
Note that the initial 'interested?' link is now an 'interested!' text without link, thanks to our
link_to_user_interested helper:

If you want more examples about the use of the AJAX helpers, you can read the drag-and-drop shopping cart
tutorial, watch the associated screencast or read the related book chapter.

Add an inline 'sign-in' form

We previously said that only registered users could declare interest about a question. This means that if a
non-authenticated user clicks on an 'interested?' link, the login page must be displayed first.

But wait. Why should a user load a new page to login, and lose contact with the question he/she declared
interest for? A better idea would be to have a login form appear dynamically on the page. That's what we are
going to do.

Add a hidden login form to the layout

Open the global layout (in askeet/apps/frontend/templates/layout.php), and add in (between
the header and the content div):

<?php use_helper('Javascript') ?>

<div id="login" style="display: none">
 <h2>Please sign-in first</h2>

<?php echo link_to_function('cancel', visual_effect('blind_up', 'login', array('duration' => 0.5))) ?>

<?php echo form_tag('user/login', 'id=loginform') ?>
 nickname: <?php echo input_tag('nickname') ?>

 password: <?php echo input_password_tag('password') ?>

symfony advent calendar

Add an inline 'sign-in' form 74/202

http://www.symfony-project.com/tutorial/symfony_ajax.html
http://www.symfony-project.com/tutorial/symfony_ajax.html
http://downloads.symfony-project.com/demo/cart/cart.mov
http://www.symfony-project.com/content/book/page/javascript.html
http://www.php.net/echo
http://www.php.net/array
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo

<?php echo input_hidden_tag('referer', $sf_params->get('referer') ? $sf_params->get('referer') : $sf_request->getUri()) ?>
<?php echo submit_tag('login') ?>

 </form>
</div>

Once again, this form is hidden by default. The referer hidden tag contains the referer request
parameter if it exists, or else the current URI.

Have the form appear when a non-authenticated user clicks an
interested link

Do you remember the User helper that we wrote previously? We will now deal with the case where the user
is not authenticated. Open again the askeet/lib/helper/UserHelper.php file and change the line:

return link_to('interested?', 'user/login');

with this one:

return link_to_function('interested?', visual_effect('blind_down', 'login', array('duration' => 0.5)));

When the user is not authenticated, the link on the 'interested?' word launches a prototype javascript effect
(blind_down) that will reveal the element of id login - and that's the form that we just added to the
layout.

Login the user

The user/login action was already written during the fifth day, and refactored during day six. Do we have
to modify it again?

public function executeLogin()
{

if ($this->getRequest()->getMethod() != sfRequest::POST)
{
// display the form
$this->getRequest()->getParameterHolder()->set('referer', $this->getRequest()->getReferer());

return sfView::SUCCESS;
}
else
{

// handle the form submission
// redirect to last page
return $this->redirect($this->getRequestParameter('referer', '@homepage'));

}
}

After all, no. It works perfectly as it is, the handling of the referer will redirect the user to the page where
he/she was when the link was clicked.

Test the AJAX functionality now. An unregistered user will be presented a login form without leaving the
current page. If the nickname and the password are recognized, the page will be refreshed and the user will be

symfony advent calendar

Add an inline 'sign-in' form 75/202

http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/array

able to click on the 'interested?' link he intended to click before.

Note: In many AJAX interactions like this one, the template of the server action is a simple
include_partial. That's because an initial result is often displayed when the whole page
is first loaded, and because the part that is updated by the AJAX action is also part of the
initial template.

See you Tomorrow

The most difficult thing in designing AJAX interactions is to properly define the caller, the server action, and
the result zone. Once you know them, symfony gives you the helpers that do the rest. To be sure that you
understood how it works, check out how we implemented the same mechanism as the one to declare interest
for the answers relevancies. This time, the AJAX action called is user/vote, the _answer.php partial is
split up in two parts (thus creating a _user_vote.php partial), and two helpers
link_to_user_relevancy_up() and link_to_user_relevancy_down() are created in the
User helper. The User module also gains a vote action and a voteSuccess.php template. Don't forget
to set the layout to off for this template too.

Askeet is starting to look like a web 2.0 application. And it is just the beginning: In a few days, we will add
some more AJAX interactions to it. Tomorrow we will take the occasion to do a general review of the MVC
techniques in symfony, and to implement an external library.

If you come across a problem while trying to follow today's tutorial, you can still download the full code from
the release_day_8 tagged source in the askeet SVN repository. If you don't have any problem, come to
the askeet forum to answer the other's questions.

symfony advent calendar

See you Tomorrow 76/202

http://svn.askeet.com/tags/release_day_8
http://www.symfony-project.com/forum/index.php/f/8/

symfony advent calendar day nine: local
improvements

Previously on symfony

During day eight, we added AJAX interactions to askeet without pain. The application is now quite usable,
but could use a lot of little improvements. Rich text should be allowed in the questions body, and primary
keys should not appear in the URIs. All that is not difficult to put in place with symfony: today will be a good
occasion to practice what you already learned, and to check that you know how to manipulate all the layers of
the MVC architecture.

Allow rich text formatting on questions and answers

Markdown

The question and answer bodies only accept plain text for now. To allow basic formatting - bold, italic,
hyperlinks, images, etc. - we will use an external library rather than reinvent the wheel.

If you have taken a look at the symfony documentation in text format, you probably know that we are big
Markdown fans. Markdown is a text-to-HTML conversion tool, and a syntax for text formatting. The great
advantage of Markdown over, for instance, Wiki or forum syntax, is that a plain text markdown file is still
very readable:

Test Markdown text

This is a **very simple** example of [Markdown][1].
The best thing about markdown is its _auto-escape_ feature for code chunks:

 link to symfony

>The `<` and `>` are properly escaped as `<` and `>`,
>and are not interpreted by any browser

[1]: http://daringfireball.net/projects/markdown/ "Markdown"

This Markdown renders as follow:

Test Markdown text

This is a very simple example of Markdown. The best thing about markdown is its
auto-escape feature for code chunks:

link to symfony

The < and > are properly escaped as < and >, and are not interpreted
by any browser

symfony advent calendar

symfony advent calendar day nine: local improvements 77/202

http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/

Markdown library

Although originally written in Perl, Markdown is available as a PHP library at PHP Markdown. That's the one
we will use. Download the markdown.php file and put it in the lib folder of the askeet project
(askeet/lib/). That's all: It is now available to all the classes of the askeet applications, provided that you
require it first:

require_once('markdown.php');

We could call the Markdown converter each time we display the body of a message, but that would require
too high a load on our servers. We'd rather convert the text body to an HTML body when the question is
created, and store the HTML version of the body in the Question table. You are probably getting used to
this, so the model extension won't be a surprise.

Extend the model

First, add a colomn to the Question table in the schema.xml:

<column name="html_body" type="longvarchar" />

Then, regenerate the model and update the database:

$ symfony propel-build-model
$ symfony propel-build-sql
$ symfony propel-insert-sql

Override the setBody method

When the ->setBody() method of the Question class is called, the html_body column must also be
updated with the Markdown conversion of the text body. Open the
askeet/lib/model/Question.php model file, and create:

public function setBody($v)
{
 parent::setBody($v);

require_once('markdown.php');

// strip all HTML tags
$v = htmlentities($v, ENT_QUOTES, 'UTF-8');

$this->setHtmlBody(markdown($v));
}

Applying the htmlentities() function before setting the HTML body protects askeet from
cross-site-scripting (XSS) attacks since all <script> tags are escaped.

symfony advent calendar

Test Markdown text 78/202

http://www.perl.com/
http://www.michelf.com/projects/php-markdown/
http://www.php.net/htmlentities

Update the test data

We will add some Markdown formatting to some of the questions of the test data (in
askeet/data/fixtures/test_data.yml), to be able to check that the conversion works properly:

Question:
 q1:
 title: What shall I do tonight with my girlfriend?
 user_id: fabien
 body: |
 We shall meet in front of the __Dunkin'Donuts__ before dinner,
 and I haven't the slightest idea of what I can do with her.
 She's not interested in _programming_, _space opera movies_ nor _insects_.
 She's kinda cute, so I __really__ need to find something
 that will keep her to my side for another evening.

 q2:
 title: What can I offer to my step mother?
 user_id: anonymous
 body: |
 My stepmother has everything a stepmother is usually offered
 (watch, vacuum cleaner, earrings, del.icio.us account).
 Her birthday comes next week, I am broke, and I know that
 if I don't offer her something *sweet*, my girlfriend
 won't look at me in the eyes for another month.

You can now repopulate the database:

$ php batch/load_data.php

Modify the templates

The showSuccess.php template of the question module can be sightly modified:

...
<div class="question_body">

<?php echo $question->getHtmlBody() ?>
</div>
...

The list template fragment (_list.php) also shows the body, but in a truncated version:

<div class="question_body">
<?php echo truncate_text(strip_tags($question->getHtmlBody()), 200) ?>

</div>

Everything is now ready for the final test: display the three pages that were modified, and observe the
formatted text coming from the test data:

http://askeet/question/list
http://askeet/recent
http://askeet/question/show/stripped_title/what-shall-i-do-tonight-with-my-girlfriend

symfony advent calendar

Test Markdown text 79/202

http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/strip_tags

The same goes for the Answer body: An alternate html_body column has to be created in the model, the
->setBody() method needs to be overridden, and the answers displayed in question/show have to use
the ->getHtmlBody() method instead of the ->getBody(). As the code is exactly the same as above,
we won't decribe it here, but you will find it in today's SVN code.

Hide all ids

Another good practice in symfony actions is to avoid as much as possible to pass primary keys as request
parameters. This is because our primary keys are mainly auto-incremental, and this gives hackers too much
information about the records of the database. Plus, the displayed URI doesn't mean anything, and that's bad
for the search engines.

Take the user profile page, for instance. For now, it uses the user id as a parameter. But if we make sure that
the nickname is unique, it could as well be the parameter for the request. Let's do it.

Change the action

Edit the user/show action:

public function executeShow()
{

$this->subscriber = UserPeer::retrieveByNickname($this->getRequestParameter('nickname'));
$this->forward404Unless($this->subscriber);

$this->interests = $this->subscriber->getInterestsJoinQuestion();
$this->answers = $this->subscriber->getAnswersJoinQuestion();
$this->questions = $this->subscriber->getQuestions();

}

Change the model

Add the following method to the UserPeer class in the askeet/lib/model/ directory.

symfony advent calendar

Hide all ids 80/202

public static function retrieveByNickname($nickname)
{

$c = new Criteria();
$c->add(self::NICKNAME, $nickname);

return self::doSelectOne($c);
}

Change the template

The pages that display a link to the user profile must now mention the user's nickname instead of his/her
id.

In the question/showSuccess.php, question/_list.php templates, replace:

<?php echo link_to($question->getUser(), 'user/show?id='.$question->getUserId()) ?>

by:

<?php echo link_to($question->getUser(), 'user/show?nickname='.$question->getUser()->getNickname()) ?>

The same kind of modification goes for the answer/_answer.php template.

Add the routing rule

Add a new rule in the routing configuration for this action so that the url pattern shows a nickname
request parameter:

user_profile:
 url: /user/:nickname
 param: { module: user, action: show }

After a symfony clear-cache, the last thing to do is to test your modifications.

Routing

Apart from today's additions, many of the actions written until now use the default routing, so the module
name and the action name are often displayed in the address bar of the browser. You already learned how to
fix it, so let's define URL patterns for all the actions. Edit the
askeet/apps/frontend/config/routing.yml:

question
question:
 url: /question/:stripped_title
 param: { module: question, action: show }

popular_questions:
 url: /index/:page
 param: { module: question, action: list, page: 1 }

recent_questions:

symfony advent calendar

Hide all ids 81/202

http://www.php.net/static
http://www.php.net/echo
http://www.php.net/echo

 url: /recent/:page
 param: { module: question, action: recent, page: 1 }

add_question:
 url: /add_question
 param: { module: question, action: add }

answer
recent_answers:
 url: /recent/answers/:page
 param: { module: answer, action: recent, page: 1 }

user
login:
 url: /login
 param: { module: user, action: login }

logout:
 url: /logout
 param: { module: user, action: logout }

user_profile:
 url: /user/:nickname
 param: { module: user, action: show }

default rules
homepage:
 url: /
 param: { module: question, action: list }

default_symfony:
 url: /symfony/:action/*
 param: { module: default }

default_index:
 url: /:module
 param: { action: index }

default:
 url: /:module/:action/*

If you navigate in the production environment, you are strongly advised to clear the cache before testing this
configuration modification.

One good practice of symfony routing is to use the rule names in a link_to() helper instead of the
module/action. Not only is it faster (the routing engine doesn't need to parse the routing configuration to
find the rule to apply), but it also allows you to modify the action behind a rule name later. The routing
chapter of the symfony book explains that more in detail.

<?php link_to('@user_profile?id='.$user->getId()) ?>
// is better than
<?php link_to('user/show?id='.$user->getId()) ?>

Askeet follows the symfony good practices, so the code that you will download at the end of this day's tutorial
contains only rule names in the link helpers. Replacing action/module by @rule in all the templates and
custom helper is not very fun to do, so the last advice concerning routing is: Write the routing rules as you

symfony advent calendar

Routing 82/202

http://www.symfony-project.com/content/book/page/routing.html
http://www.symfony-project.com/content/book/page/routing.html

create actions, and use rule names in the link helpers from the beginning.

See you Tomorrow

Today's changes were longer to read than to understand. In addition, the modifications described in the
tutorial were repeated for similar cases in the overall code. Although no real new feature was added today, the
code changed a lot.

If you feel that you didn't learn much about symfony today, it means that you are getting ready to start your
own project. The process of creating an action, modifying the model to have it serve the action as needed,
write a simple template to output the action and edit the configuration to integrate the new action into the
logic of the application are the basics of symfony development.

All the good practices exposed here (using external libraries instead of rewriting it in symfony, not showing
primary keys in the application, using routing rule names instead of module/action) will keep your
application clean, safe, fast and maintainable.

But the askeet application is far from finished! The functionnality that lacks the most is the ability to add a
new question and to add a new answer. That's what we will develop tomorrow.

Do you have a suggestion about the additional feature of the 21st day? Make sure you send it to the askeet
mailing-list. Stay tuned!

symfony advent calendar

See you Tomorrow 83/202

mailto:askeet-subscribe@symfony-project.com
mailto:askeet-subscribe@symfony-project.com

symfony advent calendar day ten: Alter data with
Ajax forms

Previously on symfony

After yesterday's review of known techniques, some of you have a hunger for interaction. Displaying rich
formatted questions and lists, even paginated, is not enough to make an application live. And the heart of the
askeet concept is to allow any registered user to ask a new question, and any user to answer an existing one.
Isn't it time we get to it?

Add a new question

The sidebar built during day seven already contains a link to add a new question. It links to the
question/add action, which is waiting to be developped.

Restrict access to registered users

First of all, only registered users can add a new question. To restrict access to the question/add action,
create a security.yml in the askeet/apps/frontend/modules/question/config/
directory:

add:
 is_secure: on
 credentials: subscriber

all:
 is_secure: off

When an unregistered user tries to access a restricted action, symfony redirects him/her to the login action.
This action must be defined in the application settings.yml, under the login_module and
login_action keys:

all:
 .actions:
 login_module: user
 login_action: login

More information about action access restriction can be found in the security chapter of the symfony book.

The addSuccess.php template

The question/add action will be used to both, display the form and handle the form. This means that as of
now, to display the form, you only need an empty action. In addition, the form will be displayed again in case
of error in the data validation:

public function executeAdd()
{

symfony advent calendar

symfony advent calendar day ten: Alter data with Ajax forms 84/202

http://www.symfony-project.com/content/book/page/security.html

}

public function handleErrorAdd()
{

return sfView::SUCCESS;
}

Both actions will output the addSuccess.php template:

<?php echo form_tag('@add_question') ?>

 <fieldset>

 <div class="form-row">
<?php echo form_error('title') ?>

 <label for="title">Question title:</label>
<?php echo input_tag('title', $sf_params->get('title')) ?>

 </div>

 <div class="form-row">
<?php echo form_error('body') ?>

 <label for="label">Your question in details:</label>
<?php echo textarea_tag('body', $sf_params->get('body')) ?>

 </div>

 </fieldset>

 <div class="submit-row">
<?php echo submit_tag('ask it') ?>

 </div>
</form>

Both title and body controls have a default value (the second argument of the form helpers) defined from
the request parameter of the same name. Why is that? Because we are going to add a validation file to the
form. If the validation fails, the form is displayed again, and the previous entries of the user are still in the
request parameters. They can be used as the default value of the form elements.

The previous entry is not lost in case of a failed form validation. That is the least you can expect of a
user-friendly application.

But, in order to achieve that, you need a form validation file.

symfony advent calendar

Add a new question 85/202

http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo

Form validation

Create a validate/ directory in the question module, and add in a add.yml validation file:

methods:
 post: [title, body]

names:
 title:
 required: Yes
 required_msg: You must give a title to your question

 body:
 required: Yes
 required_msg: You must provide a brief context for your question
 validators: bodyValidator

bodyValidator:
 class: sfStringValidator
 param:
 min: 10
 min_error: Please, give some more details

If you need more information about form validation, go back to day six or read the form validation chapter of
the symfony book.

Handle the form submission

Now edit again the question/add action to handle the form submission:

public function executeAdd()
{

if ($this->getRequest()->getMethod() == sfRequest::POST)
{
// create question
$user = $this->getUser()->getSubscriber();

$question = new Question();
$question->setTitle($this->getRequestParameter('title'));
$question->setBody($this->getRequestParameter('body'));
$question->setUser($user);
$question->save();

$user->isInterestedIn($question);

return $this->redirect('@question?stripped_title='.$question->getStrippedTitle());
}

}

Remember that the ->setTitle() method will also set the stripped_title, and the ->setBody()
method will also set the html_body field, because we overrode those methods in the Question.php
model class. The user creating a question will be declared interested in it. This is intended to prevent questions
with 0 interests, which would be too sad.

symfony advent calendar

Add a new question 86/202

http://www.symfony-project.com/content/book/page/validate_form.html

The end of the action contains a ->redirect() to the detail of the question created. The main advantage
over a ->forward() in that if the user refreshes the question detail page afterwards, the form will not be
submitted again. In addition, the 'back' button works as expected. That's a general rule: You should not end a
form submission handling action with a ->forward().

The best thing is that the action still works to display the form, that is if the request is not in POST mode. It
will behave exactly as the empty action written previously, returning the default sfView::SUCCESS that
will launch the addSuccess.php template.

Don't forget to create the isInterestedIn() method in the User model:

public function isInterestedIn($question)
{
 $interest = new Interest();
 $interest->setQuestion($question);
 $interest->setUserId($this->getId());
 $interest->save();
}

As a minor refactoring, you can use this method in the user/interested action to replace the code
snippet that does the same thing.

Go ahead, test it now. Using one of the test users, you can add a question.

Add a new answer

The answer addition will be implemented in a slightly different way. There is no need to redirect the user to a
new page with a form, then to another page again for the answer to be displayed. So the new answer form will
be in AJAX, and the new answer will appear immediately in the question detail page.

Add the AJAX form

Change the end of the modules/question/templates/showSuccess.php template by:

...
<div id="answers">
<?php foreach ($question->getAnswers() as $answer): ?>
 <div class="answer">

<?php include_partial('answer/answer', array('answer' => $answer)) ?>
 </div>
<?php endforeach; ?>

<?php echo use_helper('User') ?>

<div class="answer" id="add_answer">
<?php echo form_remote_tag(array(
'url' => '@add_answer',
'update' => array('success' => 'add_answer'),
'loading' => "Element.show('indicator')",
'complete' => "Element.hide('indicator');".visual_effect('highlight', 'add_answer'),

)) ?>

symfony advent calendar

Handle the form submission 87/202

http://www.php.net/array
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/array
http://www.php.net/array

 <div class="form-row">
<?php if ($sf_user->isAuthenticated()): ?>
<?php echo $sf_user->getNickname() ?>

<?php else: ?>
<?php echo 'Anonymous Coward' ?>
<?php echo link_to_login('login') ?>

<?php endif; ?>
 </div>

 <div class="form-row">
 <label for="label">Your answer:</label>

<?php echo textarea_tag('body', $sf_params->get('body')) ?>
 </div>

 <div class="submit-row">
<?php echo input_hidden_tag('question_id', $question->getId()) ?>
<?php echo submit_tag('answer it') ?>

 </div>
 </form>
</div>

</div>

A little refactoring

The link_to_login() function must be added to the UserHelper.php helper:

function link_to_login($name, $uri = null)
{

if ($uri && sfContext::getInstance()->getUser()->isAuthenticated())
{
return link_to($name, $uri);

}
else
{

return link_to_function($name, visual_effect('blind_down', 'login', array('duration' => 0.5)));
}

}

This function does something that we already saw in the other User helpers: it shows a link to an action if the
user is authenticated, and if not, the link points to the AJAX login form. So replace the
link_to_function() calls in the link_to_user_interested() and
link_to_user_relevancy() functions by calls to link_to_login(). Don't forget the link to
@add_question in the modules/sidebar/templates/defaultSuccess.php. Yes, this is
refactoring.

Handle the form submission

Even if it still involves a fragment, the method chosen here to handle the AJAX request is slightly different
from the one described during the eighth day. This is because we want the result of the form submission to
actually replace the form. That's why the update parameter of the form_remote_tag() helper points to
the container of the form itself, rather than to an outer zone. The _answer.php fragment will be included in
the result of the answer addition action, so that the final result can look like:

symfony advent calendar

Add a new answer 88/202

http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/array

...
<div id="answers">
 <!-- Answer 1 -->
 <!-- Answer 2 -->
 <!-- Answer 3 -->
 ...
</div>

<div class="answer" id="add_answer">
 <!-- The new answer -->
</div>

You probably guessed how the form_remote_tag() javascript helper works: It handles the form
submission to the action specified in the url argument through a XMLHttpRequest object. The result of the
action replaces the element specified in the update argument. And, just like the link_to_remote()
helper of day eight, it toggles the visibility of the activity indicator on and off according to the request
submission, and highlights the updated part at the end of the AJAX transaction.

Let us add a few words about the user associated to the new answer. We previously mentioned that answers
have to be linked to a user. If the user is authenticated, then his/her user_id is used for the new answer. In
the other case, the anonymous user is used in place, unless the user chooses to login then. The
link_to_login() helper, located in the GlobalHelper.php helper set, toggles the visibility of the
hidden login form in the layout. Browse the askeet source to see its code.

The answer/add action

The @add_answer rule given as the url argument of the AJAX form points to the answer/add action:

add_answer:
 url: /add_anwser
 param: { module: answer, action: add }

(In case you wonder, this configuration is to be added to the routing.yml application configuration file)

Here is the content of the action:

public function executeAdd()
{

if ($this->getRequest()->getMethod() == sfRequest::POST)
{
if (!$this->getRequestParameter('body'))
{
return sfView::NONE;

}

$question = QuestionPeer::retrieveByPk($this->getRequestParameter('question_id'));
$this->forward404Unless($question);

// user or anonymous coward
$user = $this->getUser()->isAuthenticated() ? $this->getUser()->getSubscriber() : UserPeer::retriveByNickname('anonymous');

// create answer
$this->answer = new Answer();

symfony advent calendar

Add a new answer 89/202

$this->answer->setQuestion($question);
$this->answer->setBody($this->getRequestParameter('body'));
$this->answer->setUser($user);
$this->answer->save();

return sfView::SUCCESS;
}

$this->forward404();
}

First of all, if this action is not called in POST mode, that means that someone typed its URI in a browser
address bar. The action is not designed for that type of (hacker) request, so it returns a 404 error in that case.

To determine the user to set as the answer's author, the action checks if the current user is authenticated. If this
is not the case, the action uses the 'Anonymous Coward' user, thanks to a new
::retrieveByNickname() method of the UserPeer class. Check the code if you have any doubt
about what this method does.

After that, everything is ready to create the new question and pass the request to the addSuccess.php
template. As expected, this template contains only one line, the include_partial:

<?php include_partial('answer', array('answer' => $answer)) ?>

We also need to disable layout for this action in frontend/modules/answer/config/view.yml:

addSuccess:
 has_layout: off

Lastly, if the user submits an empty answer, we don't want to save it. So the data handling part is bypassed,
and the action returns nothing - this will simply erase the form of the page. We could have done error
handling in this AJAX form, but it would imply putting the form itself in another fragment. That is not worth
the effort for now.

Test it

Is that all? Yes, the AJAX form is ready to be used, clean and safe. Test it by displaying the list of answers to
a question, and by adding a new answer to it. The page doesn't need a refresh, and the new answer appears at
the bottom of the list of previous ones. That was simple, wasn't it?

See you Tomorrow

Classic forms and AJAX forms are equally easy to implement in a symfony application. And with these two
additions, the askeet application has all the core features required to make it work.

One thing though: We didn't detail the way to register a new user. This feature was added to the current askeet
SVN repository anyway, since it is very similar to what has been done today.

symfony advent calendar

Add a new answer 90/202

http://www.php.net/array
http://svn.askeet.com/tags/release_day_10/
http://svn.askeet.com/tags/release_day_10/

So ten days is all it takes to build a (very) beta version of an AJAX-enhanced FAQ with symfony. However,
we want askeet to be more than that. To help build the askeet community, we need the site to deliver
syndication feeds, so that a person asking a question can register to receive the answers in a feed aggregator.
That will be tomorrow's tutorial.

Some of you already suggested a few ideas for the 21st day. Expand the list or support their suggestions by
visiting the askeet forum.

symfony advent calendar

See you Tomorrow 91/202

http://www.symfony-project.com/forum/index.php/f/8/

symfony advent calendar day eleven: syndication
feed

Previously on symfony

The askeet application is ready to be launched in a (early) beta stage. As a matter of fact, it could already
seduce lots of users since the core features (ask questions, read answers, contribute new answers) are built.
The trouble is that recurrent users will find it difficult to keep up-to-date with the latest events on the askeet
website. You need to provide them with fresh news without effort, and there is a media for that: news feed. So
let's add news feed to askeet today.

Popular questions feed

Link to the feed in the head

What we want is an RSS popular questions feed inserted in the <head> of the global layout. The resulting
HTML should look like:

<link rel="alternate" type="application/rss+xml" title="Popular questions on askeet" href="http://askeet/frontend_dev.php/feed/popular" />

To do this, open the layout.php and add in the <head>:

<?php echo auto_discovery_link_tag('rss', 'feed/popular') ?>

That's all. The auto_discovery_link_tag helper (autoloaded with the AssetHelper.php helper
library) transforms the module/action into a site URI, passing by the routing engine.

Install the plug-in

Symfony provides a sfFeed plug-in that automates most of the feed generation. To install it, you will use the
symfony command line.

$ symfony plugin-install local symfony/sfFeed

This installs the classes of the plug-in in the askeet/lib/symfony/plugins/ directory, because the
local option tells symfony to install the plug-in for the current application only. You could have installed it
for all your projects by replacing local by global.

If you want to learn more about plug-ins, how they extend the framework and how you can package the
features that you use across several projects into a plug-in, read the plug-in chapter of the symfony book.

Don't forget to clear the cache since the project lib/ forlder was modified because of the plugin. By the way,
if you experiment problems with the plugin-install command (which will probably happen if you don't
use a PEAR-installed version of symfony), copy the files located in the
lib/plugins/symfony/plugins/sfFeed/ directory from the SVN repository.

symfony advent calendar

symfony advent calendar day eleven: syndication feed 92/202

http://blogs.law.harvard.edu/tech/rss
http://www.php.net/echo
http://www.symfony-project.com/content/book/page/plugin.html

We will talk about this sfFeed class later. But first, we need to write a few lines of code.

Create the action

The feed points to a popular action of the feed action. To create it, type:

$ symfony init-module frontend feed

Then edit the askeet/apps/frontend/modules/feed/actions/action.class.php and add
in the following method:

public function executePopular()
{

// questions
$c = new Criteria();
$c->addDescendingOrderByColumn(QuestionPeer::INTERESTED_USERS);
$c->setLimit(sfConfig::get('app_feed_max'));
$questions = QuestionPeer::doSelectJoinUser($c);

$feed = sfFeed::newInstance('rss201rev2');

// channel
$feed->setTitle('Popular questions on askeet');
$feed->setLink('@homepage');
$feed->setDescription('A list of the most popular questions asked on the askeet site, rated by the community.');

// items
$feed->setFeedItemsRouteName('@question');
$feed->setItems($questions);

$this->feed = $feed;
}

Define the app_feed_max_question custom parameter in your
askeet/apps/frontend/config/app.yml configuration file:

all:
 feed:
 max: 10

Change the view configuration

By default, the result of our feed/popular action will be decorated by the layout, and will have a
text/html content-type. That's not what we want. So create a view.yml in the
askeet/apps/frontend/modules/feed/config/ directory containing:

all:
 has_layout: off
 template: feed

This deactivates the decorator and forces the output template to feedSuccess.php, whatever the action.

symfony advent calendar

Popular questions feed 93/202

Write the template

That's because the template is very simple and can be reused for other feeds. Just write this simple
askeet/apps/frontend/modules/feed/templates/feedSuccess.php template:

<?php echo $feed->getFeed() ?>

Test it

Now clear the cache (because the configuration has changed), refresh any page of the site, and notice the feed
icon of your favorite web browser. Check the feed by requesting manually:

http://askeet/feed/popular

The result is:

<?xml version="1.0" encoding="UTF-8" ?>
<rss version="2.0">

<channel>
<title>Popular questions on askeet</title>
<link>http://askeet/frontend_dev.php/</link>
<description>A list of the most popular questions asked on the askeet site, rated by the community.</description>
<language>en</language>

<item>

<title>What can I offer to my step mother?</title>
<description>My stepmother has everything a stepmother is usually offered

(watch, vacuum cleaner, earrings, del.icio.us account).
Her birthday comes next week, I am broke, and I know that
if I don't offer her something *sweet*, my girlfriend
won't look at me in the eyes for another month.</description>

<link>http://askeet/frontend_dev.php/question/what-can-i-offer-to-my-step-mother</link>
<guid>11</guid>
<pubDate>Sat, 10 Dec 2005 09:44:11 +0100</pubDate>

</item>
<item>

<title>What shall I do tonight with my girlfriend?</title>
<description>We shall meet in front of the __Dunkin'Donuts__ before dinner,

and I haven't the slightest idea of what I can do with her.
She's not interested in _programming_, _space opera movies_ nor _insects_.
She's kinda cute, so I __really__ need to find something
that will keep her to my side for another evening.</description>

<link>http://askeet/frontend_dev.php/question/what-shall-i-do-tonight-with-my-girlfriend</link>
<guid>10</guid>
<author>fp@example.com (Fabien Potencier)</author>
<pubDate>Sat, 10 Dec 2005 09:44:11 +0100</pubDate>

</item>
<item>

<title>How can I generate traffic to my blog?</title>
<description>I have a very swell blog that talks

about my class and mates and pets and favorite movies.</description>
<link>http://askeet/frontend_dev.php/question/how-can-i-generate-traffic-to-my-blog</link>
<guid>12</guid>

symfony advent calendar

Popular questions feed 94/202

http://www.php.net/echo

<author>fz@example.com (FranÃ§ois Zaninotto)</author>

<pubDate>Sat, 10 Dec 2005 09:44:12 +0100</pubDate>
</item>

</channel>
</rss>

That fast?

The magic

Now you might say: how did symfony know where to find the question's author, his/her email, and how did
symfony guess about the URI to a question detail? The answer is: That's magic.

If you don't believe in magic, then come beyond the curtain and meet the sfFeed class. This class is able to
interpret the names of the methods of the object that is passed as a parameter to its ->setItems()
methods. The Question object has a ->getUser() method, so it is used to find the author of a question.
The User object has a ->getEmail() method, so this one is also used to determine the author's email.
And the rule name passed to the ->setFeedItemsRouteName() method is:

question:
 url: /question/:stripped_title
 param: { module: question, action: show }

It contains a stripped_title parameter, so the ->getStrippedTitle() method of the Question
object is called to determine the question URI.

All that happens because the getter method names make sense - and the sfFeed class understands objects
designed that way. The inference mechanisms of this class are described in detail in the feed chapter of the
symfony book - refer to it to see how to ask, for instance, a feed without email addresses even if a
->getEmail() method exists for the object's author.

Note: The view of the feed has a XML content-type, so symfony will be smart enough not to
add the web debug toolbar to it (otherwise the XML would'nt be valid anymore). If you ever
need to disable the web debug toolbar manually, you can always call:

 sfConfig::set('sf_web_debug', false);

(find more about the web debug toolbar in the debug chapter of the symfony book).

Interface improvements

Routing

The URL of a feed is as important as a regular one, so append the following to the routing.yml:

feeds
feed_popular_questions:
 url: /feed/popular

symfony advent calendar

The magic 95/202

http://www.symfony-project.com/content/book/page/syndication.html
http://www.symfony-project.com/content/book/page/debug.html

 param: { module: feed, action: popular }

RSS image

Whenever a link to a list had a corresponding field, a nice RSS icon is displayed, together with a link to the
RSS. As this will happen quite a few times, create a link_to_feed() function in the
GlobalHelper.php:

function link_to_feed($name, $uri)
{

return link_to(image_tag('feed.gif', array('alt' => $name, 'title' => $name, 'align' => 'absmiddle')), $uri);
}

You will find the feed.gif image in the SVN repository.

Now, edit the modules/sidebar/templates/defaultSuccess.php as follows:

<?php echo link_to('popular questions', '@popular_questions') ?> <?php echo link_to_rss('popular questions', '@feed_popular_questions') ?>

See you Tomorrow

This tutorial was supposed to last one hour, and only fifteen minutes passed. You are worried? Don't. That's
another one of the lessons of agile programming: If you find a very simple solution to your problem, it is
probably the right one. There is no need to pass too much time to develop a feature if it already works. And
you now know that only fifteen minutes are necessary to setup, test and launch a RSS feed. After all, symfony
offers professional web tools for lazy folks, so enjoy your free time and leave your computer for today.

If you want some more symfony stuff, try making a new feed for the latest questions, the latest answers in
general, and the latest answers to a question in particular. It should not take you more than fifteen more
minutes, so you will have time to download the full code from the askeet SVN repository, tagged
release_day_11, and check if you did it well. Beware that there is one hidden difficulty - pay attention to
the routing rule used for the feed of the latest comments.

And if you still have a few minutes left, go to the askeet forum and express yourself.

Tomorrow, we will send emails with symfony, because we are sure that some of our users will forget their
access codes. Until then, sleep tight.

symfony advent calendar

Interface improvements 96/202

http://www.php.net/array
http://www.php.net/echo
http://www.php.net/echo
http://svn.askeet.com/tags/release_day_11/
http://www.symfony-project.com/forum/index.php/f/8/

symfony advent calendar day twelve: Emails

Previously on symfony

Yesterday, the askeet application was extended to broadcast content on another media - RSS feed. Symfony is
not just about web pages, and today's tutorial will illustrate it again. We will send an email by taking
advantage of the MVC implementation.

Password recovery

The login forms (the AJAX one in every page, and the classic one accessed by the upper menu) require a
nickname and a password, but it happens very often that users forget them. We must provide a mechanism to
let them connect again in this case.

As we don't store the passwords in clear, we will be obliged to reset it to a random password, and send it to
the user by email. For now, a user cannot modify his/her password, so the random one will not be very easy to
remember, but we will address this issue later.

Password request form

In the user module, we will create a new action that displays a form requesting an email address. In
askeet/apps/frontend/modules/user/actions/action.class.php, add:

public function executePasswordRequest()
{
}

In modules/user/templates/, create the following passwordRequestSuccess.php:

<h2>Receive your login details by email</h2>
<p>Did you forget your password? Enter your email to receive your login details:</p>
<?php echo form_tag('@user_require_password') ?>
<?php echo form_error('email') ?>

 <label for="email">email:</label>
<?php echo input_tag('email', $sf_params->get('email'), 'style=width:150px') ?>

<?php echo submit_tag('Send') ?>

</form>

This form has to be accessible from the login forms, so add in each of them (in layout.php and in
loginSuccess.php):

<?php echo link_to('Forgot your password?', '@user_require_password') ?>

Add the password request rule in the application routing.yml:

user_require_password:
 url: /password_request
 param: { module: user, action: passwordRequest }

symfony advent calendar

symfony advent calendar day twelve: Emails 97/202

http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo

Form validation

First, we will set the validation rules for the form submission. Create a passwordRequest.yml file in the
modules/user/validate/ directory:

methods:
 post: [email]

names:
 email:
 required: Yes
 required_msg: You must provide an email
 validators: emailValidator

emailValidator:
 class: sfEmailValidator
 param:
 email_error: 'You didn''t enter a valid email address (for example: name@domain.com). Please try again.'

Next, have the passwordRequest form being displayed again with the error messages if an error is
detected by adding to the
askeet/apps/frontend/modules/user/actions/actions.class.php:

public function handleErrorPasswordRequest()
{

return sfView::SUCCESS;
}

Handling the request

As described during day six, we will use the same action to handle the form submission, so modify it to:

public function executePasswordRequest()
{

if ($this->getRequest()->getMethod() != sfRequest::POST)
{
// display the form
return sfView::SUCCESS;

}

// handle the form submission
$c = new Criteria();
$c->add(UserPeer::EMAIL, $this->getRequestParameter('email'));
$user = UserPeer::doSelectOne($c);

// email exists?
if ($user)
{
// set new random password
$password = substr(md5(rand(100000, 999999)), 0, 6);
$user->setPassword($password);

$this->getRequest()->setAttribute('password', $password);
$this->getRequest()->setAttribute('nickname', $user->getNickname());

symfony advent calendar

Password recovery 98/202

http://www.php.net/substr
http://www.php.net/md5
http://www.php.net/rand

$raw_email = $this->sendEmail('mail', 'sendPassword');
$this->logMessage($raw_email, 'debug');

// save new password
$user->save();

return 'MailSent';
}
else
{

$this->getRequest()->setError('email', 'There is no askeet user with this email address. Please try again');

return sfView::SUCCESS;
}

}

If the user exists, the action determines a random password to give to the user. Then it passes the request to
another action (mail/sendPassword) and gets the result in a $raw_email variable. The
->sendEmail() method of the sfAction class is a special kind of ->forward() that executes another
action but comes back afterward (it doesn't stop the execution of the current action). In addition, it returns a
raw email that can be written into a log file (you will find more information about the way to log information
in the debug chapter of the symfony book).

If the email is successfully sent, the action specifies that a special template has to be used in place of the
default passwordRequestSuccess.php: return 'mailsent'; will launch the
passwordRequestMailSent.php template.

Note: Had we followed the example of day 6, the verification of the existence of the email
address should have been done in a custom validator. But you know that "There Is More Than
One Way To Do It", and the use of the ->setError() method avoids a double request to
the database, and the creation of a much longer validation file.

So create the new template passwordRequestMailSent.php for the confirmation page:

<h2>Confirmation - login information sent</h2>

<p>Your login information was sent to</p>
<p><?php echo $sf_params->get('email') ?></p>
<p>You should receive it shortly, so you can proceed to
the <?php echo link_to('login page', '@login') ?>.</p>

Send an email

Ok, so if a user enters a valid email address, a mail/sendPassword action is called. We now need to
create it.

Email sending action

Create a new mail module:

$ symfony init-module frontend mail

symfony advent calendar

Send an email 99/202

http://www.symfony-project.com/content/book/page/debug.html
http://www.php.net/echo
http://www.php.net/echo

Add a new sendPassword action to this module:

public function executeSendPassword()
{

$mail = new sfMail();
$mail->addAddress($this->getRequestParameter('email'));
$mail->setFrom('Askeet <askeet@symfony-project.com>');
$mail->setSubject('Askeet password recovery');

$mail->setPriority(1);

$mail->addEmbeddedImage(sfConfig::get('sf_web_dir').'/home/production/sfweb/web/images/askeet_logo.gif', 'CID1', 'Askeet Logo', 'base64', 'image/gif');

$this->mail = $mail;

$this->nickname = $this->getRequest()->getAttribute('nickname');
$this->password = $this->getRequest()->getAttribute('password');

}

The action uses the sfMail object, which is an interface to a mail sender. All the email headers are defined
in the action, but as the body will be more complicated than a simple text, we choose to use a template for it -
otherwise, we could use a simple ->setBody() method.

Embedded images are added by a call to the ->addEmbeddedImage() method, and the image path on the
server, a unique ID for insertion into the template, an alternate text and a format description must be passed as
arguments.

Note: The sfMail object is also a good way to add attachments to a mail:

// document attachment
$mail->addAttachment(sfConfig::get('sf_data_dir').'/MyDocument.doc');
// string attachment
$mail->addStringAttachment('this is some cool text to embed', 'file.txt');

You will find more details about the sfMail object in the mail chapter of the symfony book.

Mail template

Once the action is executed, the mail view handles the defined variables to the
sendPasswordSuccess.php, which is the default HTML template for the email body:

<p>Dear askeet user,</p>

<p>A request for <?php echo $mail->getSubject() ?> was sent to this address.</p>

<p>For safety reasons, the askeet website does not store passwords in clear.
When you forget your password, askeet creates a new one that can be used in place.</p>

<p>You can now connect to your askeet profile with:</p>

<p>
nickname: <?php echo $nickname ?>

password: <?php echo $password ?>
</p>

symfony advent calendar

Send an email 100/202

http://www.symfony-project.com/content/book/page/email.html
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo

<p>To get connected, go to the <?php echo link_to('login page', '@login') ?>
and enter these codes.</p>

<p>We hope to see you soon on </p>

<p>The askeet email robot</p>

Just like in any other template, the standard helpers (like the link_to() helper used here) work seamlessly
in an email template. You can also insert any presentational HTML that you need to make the email look
good.

Embedding an image is as simple as passing a sid: parameter corresponding to the unique id of the image
loaded in the action.

Alternate mail template

If the view finds a sendPasswordSuccess.altbody.php, it will use it to add an alternate (text) body
to the email. This allows you to define a text-only template for email clients not accepting HTML:

Dear askeet user,

A request for <?php echo $mail->getSubject() ?> was sent to this address.

For safety reasons, the askeet website does not store passwords in clear.
When you forget your password, askeet creates a new one that can be used in place.

You can now connect to your askeet profile with:

nickname: <?php echo $nickname ?>
password: <?php echo $password ?>

To get connected, go to the login page (http://www.askeet.com/login)
and enter these codes.

We hope to see you soon on askeet!

The askeet email robot

Configuration

The sfMail being the view defined for this action, it can accept additional configuration. Create a
mailer.yml configuration file with:

dev:
 deliver: off

all:
 mailer: sendmail

This stipulates the mailer program to be used to send mails, and deactivates the sending of mails in the
development environment - the emails in the test data are fake anyway.

symfony advent calendar

Send an email 101/202

http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo

You don't want users to have direct access to this mailing action. So create a module.yml in the module
config/ directory with:

all:
 is_internal: on

Test

Test the new password recovery system by creating a custom user in the test data with your personal email,
launch the import_data.php batch.

Clear the cache and navigate to the password recovery page in the production environment. After entering
your email address and submitting the form, you should receive the email shortly.

See you Tomorrow

The email system of symfony is both simple and powerful. Simple emails are as easy to send as possible;
complex emails are no harder to write than complex HTML pages, and you take full advantage of the MVC
architecture. So for your next emailing campaign, maybe you should use symfony instead of a commercial
emailing solution...

Anyway, tomorrow will be the tag day. Askeet questions will be tagged, the tags will be searchable, and we
will give you the nicest tag cloud that you have ever dreamed of.

As usual, today's code is available in the askeet SVN repository, tagged /tags/release_day_12. We are
still uncertain about what to talk during day 21, so post your suggestions to the askeet mailing-list or to the
askeet forum.

symfony advent calendar

Send an email 102/202

http://svn.askeet.com/tags/release_tag_12/
mailto:askeet-subscribe@symfony-project.com
http://www.symfony-project.com/forum/index.php/f/8/

symfony advent calendar day thirteen: Tags

Previously on symfony

The askeet application can serve data trough a web page, a RSS feed, or email. Questions can be asked and
answered. But the organization of questions is still to be developed. Organizing questions in categories and
subcategories could end up in an inextricable tree structure, with thousands of branches and no easy way to
know in which sub-branch a question you are looking for may be.

However, web 2.0 applications have come out with a new way of organizing items: tags. Tags are words, just
as categories are. But the differences are that there is no hierarchy of tags, and that an item can have several
tags. While finding a cat with categories could prove cumbersome (animal/mammal/four-legged/feline/, or
other mysterious category names), it is very simple with tags (pet+cute). Add to that the ability for all users to
add tags to a given question, and you get the famous concept of folksonomy.

Guess what? That's exactly what we are going to do with the askeet questions. It will take us some time (today
and tomorrow), but the result is worth the pain. It will also be the occasion to show how to do complex SQL
requests to a database using a Creole connection. Let's go.

The QuestionTag class

There are several ways to implement tags. We chose to add a QuestionTag table with the following
structure:

symfony advent calendar

symfony advent calendar day thirteen: Tags 103/202

http://en.wikipedia.org/wiki/Folksonomy

When a user tags a question, it creates a new record in the question_tag table, linked to both the user
table and the question table. There are two versions of the tag recorded: The one entered by the user, and a
normalized version (all lower case, without any special character) used for indexing.

Schema update

As usual, adding a table to a symfony project is done by appending its Propel definition to the schema.xml
file:

...
<table name="ask_question_tag" phpName="QuestionTag">

<column name="question_id" type="integer" primaryKey="true" />
<foreign-key foreignTable="ask_question">

<reference local="question_id" foreign="id" />
</foreign-key>
<column name="user_id" type="integer" primaryKey="true" />
<foreign-key foreignTable="ask_user">

<reference local="user_id" foreign="id" />
</foreign-key>
<column name="created_at" type="timestamp" />
<column name="tag" type="varchar" size="100" />
<column name="normalized_tag" type="varchar" size="100" primaryKey="true" />
<index name="normalized_tag_index">

<index-column name="normalized_tag" />
</index>

</table>

Rebuild the object model:

$ symfony propel-build-model

Custom class

Add a new Tag.class.php in the askeet/lib/ directory with the following methods:

<?php

class Tag
{
 public static function normalize($tag)

{
$n_tag = strtolower($tag);

// remove all unwanted chars
$n_tag = preg_replace('/[^a-zA-Z0-9]/', '', $n_tag);

return trim($n_tag);
}

 public static function splitPhrase($phrase)
{

$tags = array();
$phrase = trim($phrase);

symfony advent calendar

The QuestionTag class 104/202

http://www.php.net/static
http://www.php.net/strtolower
http://www.php.net/preg_replace
http://www.php.net/trim
http://www.php.net/static
http://www.php.net/array
http://www.php.net/trim

$words = preg_split('/(")/', $phrase, -1, PREG_SPLIT_NO_EMPTY | PREG_SPLIT_DELIM_CAPTURE);
$delim = 0;
foreach ($words as $key => $word)
{
if ($word == '"')
{

$delim++;
continue;

}
if (($delim % 2 == 1) && $words[$key - 1] == '"')
{

$tags[] = trim($word);
}
else
{

$tags = array_merge($tags, preg_split('/\s+/', trim($word), -1, PREG_SPLIT_NO_EMPTY));
}

}

return $tags;
}

}

?>

The first method returns a normalized tag, the second one takes a phrase as argument and returns an array of
tags. These two methods will be of great use when manipulating tags.

The interest of adding the class in the lib/ directory is that it will be loaded automatically and only when
needed, without needing to require it. It's called autoloading.

Extend the model

In the new askeet/lib/model/QuestionTag.php, add the following method to set the
normalized_tag when the tag is set:

public function setTag($v)
{
 parent::setTag($v);

$this->setNormalizedTag(Tag::normalize($v));
}

The helper class that we just created is already of great use: It reduces the code of this method to only two
lines.

Add some test data

Append a file to the askeet/data/fixtures/ directory with some tag test data in it:

QuestionTag:
 t1: { question_id: q1, user_id: fabien, tag: relatives }
 t2: { question_id: q1, user_id: fabien, tag: girl }
 t4: { question_id: q1, user_id: francois, tag: activities }

symfony advent calendar

The QuestionTag class 105/202

http://www.php.net/preg_split
http://www.php.net/trim
http://www.php.net/array_merge
http://www.php.net/preg_split
http://www.php.net/trim

 t6: { question_id: q2, user_id: francois, tag: 'real life' }
 t5: { question_id: q2, user_id: fabien, tag: relatives }
 t5: { question_id: q2, user_id: fabien, tag: present }
 t6: { question_id: q2, user_id: francois, tag: 'real life' }
 t7: { question_id: q3, user_id: francois, tag: blog }
 t8: { question_id: q3, user_id: francois, tag: activities }

Make sure this file comes after the other files of the directory in the alphabetical order, so that the
sfPropelData object can link these new records with the related records of the Question and User
tables. You can now repopulate your database by calling:

$ php batch/load_data.php

We are now ready to work on tags in the actions. But first, let us extend the model for the Question class.

Display the tags of a question

Before adding anything to the controller layer, let's add a new tag module so that things keep organized:

$ symfony init-module frontend tag

Extend model

We will need to display the whole list of words tagged by all users for a given question. As the ability to
retrieve the related tags should be a method of the Question class, we will extend it (in
askeet/lib/model/Question.php). The trick here is to group double entries to avoid double tags
(two identical tags should only appear once in the result). The new method has to return a tag array:

public function getTags()
{

$c = new Criteria();
$c->clearSelectColumns();
$c->addSelectColumn(QuestionTagPeer::NORMALIZED_TAG);
$c->add(QuestionTagPeer::QUESTION_ID, $this->getId());
$c->setDistinct();
$c->addAscendingOrderByColumn(QuestionTagPeer::NORMALIZED_TAG);

$tags = array();
$rs = QuestionTagPeer::doSelectRS($c);
while ($rs->next())
{
$tags[] = $rs->getString(1);

}

return $tags;
}

This time, as we need only one column (the normalized_tag), there is no point to ask Propel to return an
array of Tag objects populated from the database (this process, by the way, is called hydrating). So we do a
simple query that we parse into an array, which is much faster.

symfony advent calendar

Display the tags of a question 106/202

http://www.php.net/array

Modify the view

The question detail page should now display the list of tags for a given question. We will use the sidebar for
that. As it has been built as a component slot during the seventh day, we can set a specific component for this
bar in the question module only.

So in askeet/apps/frontend/modules/question/config/view.yml, add the following
configuration:

showSuccess:
 components:
 sidebar: [sidebar, question]

This component of the sidebar module is not yet created, but it is quite simple (in
modules/sidebar/actions/components.class.php):

public function executeQuestion()
{

$this->question = QuestionPeer::getQuestionFromTitle($this->getRequestParameter('stripped_title'));
}

The longest part to write is the fragment (modules/sidebar/templates/_question.php):

<?php include_partial('sidebar/default') ?>

<h2>question tags</h2>

<ul id="question_tags">
<?php include_partial('tag/question_tags', array('question' => $question, 'tags' => $question->getTags())) ?>

We choose to insert the list of tags as a fragment because it will be refreshed by an AJAX request a bit later.

This partial has to be created in modules/tag/templates/_question_tags.php:

<?php foreach($tags as $tag): ?>
 <?php echo link_to($tag, '@tag?tag='.$tag, 'rel=tag') ?>
<?php endforeach; ?>

The rel=tag attribute is a MicroFormat. It is by no means compulsory, but as it costs nothing to add it here,
we'll let it stay.

Add the @tag routing rule in the routing.yml:

tag:
 url: /tag/:tag
 param: { module: tag, action: show }

symfony advent calendar

Display the tags of a question 107/202

http://www.php.net/array
http://www.php.net/echo
http://microformats.org/wiki/rel-tag

Test it

Display the detail of the first question and look for the list of tags in the sidebar:

http://askeet/question/what-can-i-offer-to-my-step-mother

Display a short list of popular tags for a question

The sidebar is a good place to show the whole list of tags for a question. But what about the tags displayed in
the list of questions? For each question, we should only display a subset of tags. But which ones? We will
choose the most popular ones, i.e. the tags than have been given to this question most often. We will probably
have to encourage users to keep on tagging a question with existing tags to increase the popularity of relevant
tags for this question. If all users don't do that, maybe "moderators" will do it.

Extend the model

Anyway, this means that we have to add a ->getPopularTags() method to our Question object. But
this time, the request to the database is not simple. Using Propel to do it would multiply the number of
requests and take way too much time. Symfony allows you to use the power of SQL when it is the best
solution, so we will just need a Creole connection to the database and execute a regular SQL query.

This query should be something like:

SELECT normalized_tag AS tag, COUNT(normalized_tag) AS count
FROM question_tag

symfony advent calendar

Display the tags of a question 108/202

WHERE question_id = $id
GROUP BY normalized_tag
ORDER BY count DESC
LIMIT $max

However, using the actual column and table names creates a dependency to the database and bypasses the data
abstraction layer. If, in the future, you decide to rename a column or a table, this raw SQL query will not work
anymore. That's why the symfony version of the request doesn't use the current names but the abstracted ones
instead. It is slightly harder to read, but it is much easier to maintain.

public function getPopularTags($max = 5)
{

$tags = array();

$con = Propel::getConnection();
$query = '

 SELECT %s AS tag, COUNT(%s) AS count
 FROM %s
 WHERE %s = ?
 GROUP BY %s
 ORDER BY count DESC
 ';

$query = sprintf($query,
 QuestionTagPeer::NORMALIZED_TAG,
 QuestionTagPeer::NORMALIZED_TAG,
 QuestionTagPeer::TABLE_NAME,
 QuestionTagPeer::QUESTION_ID,
 QuestionTagPeer::NORMALIZED_TAG

);

$stmt = $con->prepareStatement($query);
$stmt->setInt(1, $this->getId());
$stmt->setLimit($max);
$rs = $stmt->executeQuery();
while ($rs->next())
{
$tags[$rs->getString('tag')] = $rs->getInt('count');

}

return $tags;
}

First, a connection to the database is opened in $con. The SQL query is built by replacing %s tokens in a
string by the column and table names that come from the abstraction layer. A Statement object containing
the query and a ResultSet object containing the result of the query are created. These are Creole objects,
and their use is described in detail in the Creole documentation. The ->setInt() method of the
Statement object replaces the first ? in the SQL query by the question id. The $max argument is used to
limit the number of results returned with the ->setLimit() method.

The method returns an associative array of normalized tags and popularity, ordered by descending popularity,
with only one request to the database.

symfony advent calendar

Display a short list of popular tags for a question 109/202

http://www.php.net/array
http://www.php.net/sprintf
http://creole.phpdb.org/wiki/wiki.php?node=5

Modify the view

Now we can add the list of tags for a question, which is formatted in a _list.php fragment in the
modules/question/templates/ directory:

<?php use_helpers('Text', 'Date', 'Global', 'Question') ?>

<?php foreach($question_pager->getResults() as $question): ?>
 <div class="question">
 <div class="interested_block" id="block_<?php echo $question->getId() ?>">

<?php include_partial('question/interested_user', array('question' => $question)) ?>
 </div>

 <h2><?php echo link_to($question->getTitle(), '@question?stripped_title='.$question->getStrippedTitle()) ?></h2>

 <div class="question_body">
 <div>asked by <?php echo link_to($question->getUser(), '@user_profile?nickname='.$question->getUser()->getNickname()) ?> on <?php echo format_date($question->getCreatedAt(), 'f') ?></div>

<?php echo truncate_text(strip_tags($question->getHtmlBody()), 200) ?>
 </div>

 tags: <?php echo tags_for_question($question) ?>

 </div>
<?php endforeach; ?>

<div id="question_pager">
<?php echo pager_navigation($question_pager, $rule) ?>

</div>

Because we want to separate the tags by a + sign, and to avoid too much code in the template to deal with the
limits, we write a tags_for_question() helper function in a new
lib/helper/QuestionHelper.php helper library:

function tags_for_question($question, $max = 5)
{

$tags = array();

foreach ($question->getPopularTags($max) as $tag => $count)
{

$tags[] = link_to($tag, '@tag?tag='.$tag);
}

return implode(' + ', $tags);
}

Test

The list of questions now displays the popular tags for each question:

http://askeet/

symfony advent calendar

Display a short list of popular tags for a question 110/202

http://www.php.net/array
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/strip_tags
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/array
http://www.php.net/implode

Display the list of questions tagged with a word

Each time we displayed a tag, we added a link to a @tag routing rule. This is supposed to link to a page that
displays the popular questions tagged with a given tag. It is simple to write, so we won't delay it anymore.

The tag/show action

Create a show action in the tag module:

public function executeShow()
{

$this->question_pager = QuestionPeer::getPopularByTag($this->getRequestParameter('tag'), $this->getRequestParameter('page'));
}

Extend the model

As usual, the code that deals with the model is placed in the model, this time in the QuestionPeer class
since it returns a set of Question objects. We want the popular question by interested users, so this time,
there is no need for a complex request. Propel can do it with a single ->doSelect() call:

public static function getPopularByTag($tag, $page)
{

$c = new Criteria();
$c->add(QuestionTagPeer::NORMALIZED_TAG, $tag);
$c->addDescendingOrderByColumn(QuestionPeer::INTERESTED_USERS);
$c->addJoin(QuestionTagPeer::QUESTION_ID, QuestionPeer::ID, Criteria::LEFT_JOIN);

$pager = new sfPropelPager('Question', sfConfig::get('app_pager_homepage_max'));
$pager->setCriteria($c);
$pager->setPage($page);
$pager->init();

return $pager;

symfony advent calendar

Display the list of questions tagged with a word 111/202

http://www.php.net/static

}

The method returns a pager of questions, ordered by popularity.

Create the template

The modules/tag/templates/showSuccess.php template is as simple as you expect it to be:

<h1>popular questions for tag "<?php echo $sf_params->get('tag') ?>"</h1>

<?php include_partial('question/list', array('question_pager' => $question_pager, 'rule' => '@tag?tag=.'$sf_params->get(tag))) ?>

Add the page parameter in the routing rule

In the routing.yml, add a :page parameter with a default value in the @tag routing rule:

tag:
 url: /tag/:tag/:page
 param: { module: tag, action: show, page: 1 }

Test it

Navigate to the activities tag page to see all the questions tagged with this word:

http://askeet/tag/activities

See you Tomorrow

The Creole database abstraction layer allows symfony to do complex SQL requests. On top of that, the Propel
object-relational mapping gives you the tools to work in an object-oriented world, useful methods that keep
you from worrying about the database, and it transforms requests into simple sentences.

Some of you may worry about the important load that the above requests may put on the database.
Optimizations are still possible - for instance, you could create a popular_tags column in the Question
table, updated by a transaction each time a related QuestionTag is created. The list of questions would then

symfony advent calendar

Display the list of questions tagged with a word 112/202

http://www.php.net/array

be much less heavy. But the benefits of the cache system - which we will discuss in a few days - make this
optimization useless.

Tomorrow, we will finish the tag features of the askeet application. Users will be able to add tags to a
question, and a global tag bubble will be made available. Make sure you come back to read about it.

The full code of the askeet application as of today can be grabbed from the askeet SVN repository, tagged
/tags/release_day_13/. If you have any questions about today's tutorial, feel free to ask them in the
askeet forum.

symfony advent calendar

See you Tomorrow 113/202

http://svn.askeet.com/tags/release_day_13/
http://www.symfony-project.com/forum/index.php/f/8/

symfony advent calendar day fourteen: Tags, part
II

Previously on symfony

During yesterday's tutorial, we built the first part of the folksonomy features of symfony. The QuestionTag
class and the other extensions to the model helped us to display the tags of a question in the question list and
in the question detail. In addition, the list of popular questions for a given tag was also developed.

There are two things that are left to do concerning tags, and they both sound quite 'web 2.0': The ability to add
a new tag with an AJAX form, and the global askeet tag bubble. Are you ready to experience the agile
development methods of symfony?

Add tags to a question

The form

Not only do we want to give the ability to a registered user to add a tag for a question, we also want to suggest
one of the tags given to other questions before if they match the first letters he/she types. This is called auto
complete. If you ever played with google suggest, you know what this is about.

Yesterday, we created a fragment that is inserted in the sidebar when a question detail is displayed. Edit this
askeet/apps/frontend/modules/sidebar/templates/_question.php file to add a form at
the end:

...
<?php if ($sf_user->isAuthenticated()): ?>
 <div>Add your own:

<?php echo form_remote_tag(array(
'url' => '@tag_add',
'update' => 'question_tags',

)) ?>
<?php echo input_hidden_tag('question_id', $question->getId()) ?>
<?php echo input_auto_complete_tag('tag', '', 'tag/autocomplete', 'autocomplete=off', 'use_style=true') ?>
<?php echo submit_tag('Tag') ?>

 </form>
 </div>
<?php endif; ?>

Of course, as a tag has to be linked to a user, the addition of a new tag is restricted to authenticated users. We
will talk in a minute about the form_remote_tag() helper. But first, let's have a look at the auto complete
input tag. It specifies an action (here, tag/autocomplete) to get the array of matching options.

Autocomplete

The list that the action should return is a list of tags entered by the user that match the entry in the tag field,
without duplicates, ordered by alphabetical order. The SQL query that returns this is:

symfony advent calendar

symfony advent calendar day fourteen: Tags, part II 114/202

http://en.wikipedia.org/wiki/Folksonomy
http://www.google.com/webhp?complete=1&hl=en
http://www.php.net/echo
http://www.php.net/array
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo

SELECT DISTINCT tag AS tag
FROM question_tag
WHERE user_id = $id AND tag LIKE $entry
ORDER BY tag

Add this action to the modules/tag/actions/action.class.php file:

public function executeAutocomplete()
{

$this->tags = QuestionTagPeer::getTagsForUserLike($this->getUser()->getSubscriberId(), $this->getRequestParameter('tag'), 10);
}

As usual, the heart of the database query lies in the model. Add the following method to the
QuestionTagPeer class:

public static function getTagsForUserLike($user_id, $tag, $max = 10)
{

$tags = array();

$con = Propel::getConnection();
$query = '

 SELECT DISTINCT %s AS tag
 FROM %s
 WHERE %s = ? AND %s LIKE ?
 ORDER BY %s
 ';

$query = sprintf($query,
 QuestionTagPeer::TAG,
 QuestionTagPeer::TABLE_NAME,
 QuestionTagPeer::USER_ID,
 QuestionTagPeer::TAG,
 QuestionTagPeer::TAG

);

$stmt = $con->prepareStatement($query);
$stmt->setInt(1, $user_id);
$stmt->setString(2, $tag.'%');
$stmt->setLimit($max);
$rs = $stmt->executeQuery();
while ($rs->next())
{
$tags[] = $rs->getString('tag');

}

return $tags;
}

Now that the action has determined the list of tags, we only need to shape them in the
autocompleteSuccess.php template:

<?php foreach ($tags as $tag): ?>
 <?php echo $tag ?>
<?php endforeach; ?>

symfony advent calendar

Add tags to a question 115/202

http://www.php.net/static
http://www.php.net/array
http://www.php.net/sprintf
http://www.php.net/echo

Add a new routing.yml route (and use it instead of the module/action in the
input_auto_complete_tag() call of the _question.php partial):

tag_autocomplete:
 url: /tag_autocomplete
 param: { module: tag, action: autocomplete }

And configure your view.yml:

autocompleteSuccess:
 has_layout: off
 components: []

Go ahead, you can try it: After registering with an existing account (for instance: fabpot/symfony), display a
question and notice the new field in the sidebar. Type in the first letters of a tag already given by this user (for
instance: relatives) and watch the div which appears below the field, suggesting the appropriate entry.

Remote form

When the form is submitted, there is no need to refresh the full page: Only the list of tags and the form to add
a tag have to be refreshed. That's the purpose of the form_remote_tag() helper, which specifies the
action to be called when the form is submitted (tag/add), and the zone of the page to be updated by the
result of this action (the element identified 'question_tags'). This has already been explained during the eighth
day, with the AJAX form to add a question.

Let's create the executeAdd() method in the tag actions:

public function executeAdd()
{

$this->question = QuestionPeer::retrieveByPk($this->getRequestParameter('question_id'));
$this->forward404Unless($this->question);

$userId = $this->getUser()->getSubscriberId();
$phrase = $this->getRequestParameter('tag');
$this->question->addTagsForUser($phrase, $userId);

symfony advent calendar

Add tags to a question 116/202

$this->tags = $this->question->getTags();
}

And the addTagsForUser in the Question class:

public function addTagsForUser($phrase, $userId)
{

// split phrase into individual tags
$tags = Tag::splitPhrase($phrase);

// add tags
foreach ($tags as $tag)
{

$questionTag = new QuestionTag();
$questionTag->setQuestionId($this->getId());
$questionTag->setUserId($userId);
$questionTag->setTag($tag);
$questionTag->save();

}
}

The addSuccess.php template will determine the code that will replace the update zone. As usual with
AJAX actions, it contains a simple include_partial():

<?php include_partial('tag/question_tags', array('question' => $question, 'tags' => $tags)) ?>

Add a new routing.yml route:

tag_add:
 url: /tag_add
 param: { module: tag, action: add }

And configure your view.yml:

addSuccess:
 has_layout: off
 components: []

Test it

Try it on: Login to the site, display a question detail, enter a new tag and submit. The whole list updates, and
the new tag inserts were it should in the alphabetical order.

Display the tag bubble

Folksonomy allows to rate a tag with a popularity. But the amount of tags make a list of tags difficult to read.
The most satisfying solution, visually speaking, is to increase the size of a tag word according to its
popularity, so that the most popular tags - the ones that are given most by users - appear immediately. Check
the del.icio.us popular tags page to understand what a tag bubble is.

symfony advent calendar

Add tags to a question 117/202

http://www.php.net/array
http://del.icio.us/tag/

80% of the visits to a website concern less than 20% of its content, that's a rule that many website verify every
day, and askeet will probably be no different. So if askeet proposes a list of tags, it will have to be arranged by
popularity as well, to limit the perturbation of the most unpopular tags ('grandma', 'chocolate') and to increase
the visibility of the most popular ones ('php', 'real life', 'useful').

Extend the QuestionTagPeer class

The provider of the list of popular tags cannot be another class than QuestionTagPeer. Extend it with a
new method, in which we will experiment an alternative way of writing SQL queries:

public static function getPopularTags($max = 5)
{

$tags = array();

$con = Propel::getConnection();
$query = '

 SELECT '.QuestionTagPeer::NORMALIZED_TAG.' AS tag,
 COUNT('.QuestionTagPeer::NORMALIZED_TAG.') AS count
 FROM '.QuestionTagPeer::TABLE_NAME.'
 GROUP BY '.QuestionTagPeer::NORMALIZED_TAG.'
 ORDER BY count DESC';

$stmt = $con->prepareStatement($query);
$stmt->setLimit($max);
$rs = $stmt->executeQuery();
$max_popularity = 0;
while ($rs->next())
{
if (!$max_popularity)
{
$max_popularity = $rs->getInt('count');

}

$tags[$rs->getString('tag')] = floor(($rs->getInt('count') / $max_popularity * 3) + 1);
}

ksort($tags);

return $tags;
}

We limit the number of popularity degrees to 4, because otherwise the tag cloud would become unreadable.
The result of the method is an associative array of tag names and popularity. We are ready to display it.

Display a tag bubble

Create a simple popular action in the tag module:

public function executePopular()
{

$this->tags = QuestionTagPeer::getPopularTags(sfConfig::get('app_tag_cloud_max'));
}

symfony advent calendar

Display the tag bubble 118/202

http://www.php.net/static
http://www.php.net/array
http://www.php.net/floor
http://www.php.net/ksort

Nearly as simple as the action is the popularSuccess.php template:

<h1>popular tags</h1>

<ul id="tag_cloud">
<?php foreach($tags as $tag => $count): ?>

 <li class="tag_popularity_<?php echo $count ?>"><?php echo link_to($tag, '@tag?tag='.$tag, 'rel=tag') ?>
<?php endforeach; ?>

Don't forget to add a routing rule for this new action in the routing.yml configuration file:

popular_tags:
 url: /popular_tags
 param: { module: tag, action: popular }

And the app_tag_cloud_max parameter in the application app.yml:

all:
 tag:
 cloud_max: 40

Everything is ready: display the tag cloud by requesting

http://askeet/popular_tags

Style the tag list items

But where is the cloud? All that the action returns is a list of tags, in alphabetical order. The real shaping is
done by a stylesheet, as recommended by web standards. Append the following declarations to the
main.css stylesheet (located in askeet/web/css).

ul#tag_cloud
{

list-style: none;
}

ul#tag_cloud li
{

list-style: none;
display: inline;

}

ul#tag_cloud li.tag_popularity_1
{

font-size: 60%;
}

ul#tag_cloud li.tag_popularity_2
{

font-size: 100%;
}

ul#tag_cloud li.tag_popularity_3

symfony advent calendar

Display the tag bubble 119/202

http://www.php.net/echo

{
font-size: 130%;

}

ul#tag_cloud li.tag_popularity_4
{

font-size: 160%;
}

Refresh the popular tags page, and voila!

See you Tomorrow

Adding taxonomy to your site is not a big deal with symfony. Complex requests, autocomplete forms and
local refresh of a page after a form submission need only a few lines of code.

But the facility to develop applications must not let you forget the good principles of development, and you
should always test all the changes you make. The best tool to allow you to develop fast and to refactor often
are the unit tests, the latest great advance in computer programming, and we will be dealing with them
tomorrow.

Until then, you can post your suggestions for the 21st day to the askeet mailing-list. If you want to download
the entire code of the application so far, head to the askeet SVN repository, and the
/tags/release_day_14 tag.

symfony advent calendar

See you Tomorrow 120/202

http://en.wikipedia.org/wiki/Unit_test
mailto:askeet-subscribe@symfony-project.com
http://svn.askeet.com/tags/release_day_14/

symfony advent calendar day fifteen: Unit tests

Previously on symfony

The questions are now well organized in the askeet website, thanks to the community tagging feature that we
added yesterday.

But there is a thing that has not been described until now, despite its importance in the life of web
applications. Unit tests are one of the greatest advances in programming since object orientation. They allow
for a safe development process, refactoring without fear, and can sometimes replace documentation since they
illustrate quite clearly what an application is supposed to do. Symfony supports and recommends unit testing,
and provides tools for that. The overview of these tools - and the addition of a few unit tests to askeet - will
take much of our time today.

Simple test

There are many unit test frameworks in the PHP world, mostly based on Junit. We didn't develop another one
for symfony, but instead we integrated the most mature of them all, Simple Test. It is stable, well documented,
and offers tons of features that are of considerable value for all PHP projects, including symfony ones. If you
don't know it already, you are strongly advised to browse their documentation, which is very clear and
progressive.

Simple Test is not bundled with symfony, but very simple to install. First, download the Simple Test PEAR
installable archive at SourceForge. Install it via pear by calling:

$ pear install simpletest_1.0.0.tgz

If you want to write a batch script that uses the Simple Test library, all you have to do is insert these few lines
of code on top of the script:

<?php

require_once('simpletest/unit_tester.php');
require_once('simpletest/reporter.php');

?>

Symfony does it for you if you use the test command line; we will talk about it shortly.

Note: Due to non backward-compatible changes in PHP 5.0.5, Simple Test is currently not
working if you have a PHP version higher than 5.0.4. This should change shortly (an alpha
version addressing this problem is available), but unfortunately the rest of this tutorial will
probably not work if you have a later version.

symfony advent calendar

symfony advent calendar day fifteen: Unit tests 121/202

http://en.wikipedia.org/wiki/Unit_test
http://junit.org
http://www.lastcraft.com/simple_test.php
http://www.lastcraft.com/unit_test_documentation.php
https://sourceforge.net/project/showfiles.php?group_id=76550

Unit tests in a symfony project

Default unit tests

Each symfony project has a test/ directory, divided into application subdirectories. For askeet, if you
browse to the askeet/test/frontend/ directory, you will see that a few files already exist there:

answerActionsTest.php
feedActionsTest.php
mailActionsTest.php
sidebarActionsTest.php
userActionsTest.php

They all contain the same initial code:

<?php

class answerActionsWebBrowserTest extends UnitTestCase
{
 private

$browser = null;

 public function setUp ()
{
// create a new test browser
$this->browser = new sfTestBrowser();
$this->browser->initialize('hostname');

}

 public function tearDown ()
{
$this->browser->shutdown();

}

 public function test_simple()
{
$url = '/answer/index';
$html = $this->browser->get($url);
$this->assertWantedPattern('/answer/', $html);

}
}

?>

The UnitTestCase class is the core class of the Simple Test unit tests. The setUp() method is run just
before each test method, and tearDown() is run just after each test method. The actual test methods start
with the word 'test'. To check if a piece of code is behaving as you expect, you use an assertion, which is a
method call that verifies that something is true. In Simple Test, assertions start by assert. In this example,
one unit test is implemented, and it looks for the word 'user' in the default page of the module. This
autogenerated file is a stub for you to start.

As a matter of fact, every time you call a symfony init-module, symfony creates a skeleton like this
one in the test/[appname]/ directory to store the unit tests related to the created module. The trouble is

symfony advent calendar

Unit tests in a symfony project 122/202

that as soon as you modify the default template, the stub tests don't pass anymore (they check the default title
of the page, which is 'module $modulename'). So for now, we will erase these files and work on our own test
cases.

Add a unit test

During day 13, we created a Tag.class.php file with two functions dedicated to tag manipulation. We
will add a few unit tests for our Tag library.

Create a TagTest.php file (all the test case files must end with Test for Simple Test to find them):

<?php

require_once('Tag.class.php');

class TagTest extends UnitTestCase
{
 public function test_normalize()

{
$tests = array(

'FOO' => 'foo',
' foo' => 'foo',
'foo ' => 'foo',
' foo ' => 'foo',
'foo-bar' => 'foobar',

);

foreach ($tests as $tag => $normalized_tag)
{
$this->assertEqual($normalized_tag, Tag::normalize($tag));

}
}

}

?>

The first test case that we will implement concerns the Tag::normalize() method. Unit tests are
supposed to test one case at a time, so we decompose the expected result of the text method into elementary
cases. We know that the Tag::normalize() method is supposed to return a lower-case version of its
argument, without any spaces - either before or after the argument - and without any special character. The
five test cases defined in the $test array are enough to test that.

For each of the elementary test cases, we then compare the normalized version of the input with the expected
result, with a call to the ->assertEqual() method. This is the heart of a unit test. If it fails, the name of
the test case will be output when the test suite is run. If it passes, it will simply add to the number of passed
tests.

We could add a last test with the word ' FOo-bar ', but it mixes elementary cases. If this test fails, you
won't have a clear idea of the precise cause of the problem, and you will need to investigate further. Keeping
to elementary cases gives you the insurance that the error will be located easily.

symfony advent calendar

Unit tests in a symfony project 123/202

http://www.php.net/array

Note: The extensive list of the assert methods can be found in the Simple Test
documentation.

Running unit tests

The symfony command line allows you to run all the tests at once with a single command (remember to call it
from your project root directory):

$ symfony test frontend

Calling this command executes all the tests of the test/frontend/ directory, and for now it is only the
ones of our new TagTest.php set. These tests will pass and the command line will show:

$ symfony test frontend
Test suite in (test/frontend)
OK
Test cases run: 1/1, Passes: 5, Failures: 0, Exceptions: 0

Note: Tests launched by the symfony command line don't need to include the Simple Test
library (unit_tester.php and reporter.php are included automatically).

The other way around

The greatest benefit of unit tests is experienced when doing test-driven development. In this methodology, the
tests are written before the function is written.

With the example above, you would write an empty Tag::normalize() method, then write the first test
case ('Foo'/'foo'), then run the test suite. The test would fail. You would then add the necessary code to
transform the argument into lowercase and return it in the Tag::normalize() method, then run the test
again. The test would pass this time.

So you would add the tests for blanks, run them, see that they fail, add the code to remove the blanks, run the
tests again, see that they pass. Then do the same for the special characters.

Writing tests first helps you to focus on the things that a function should do before actually developing it. It's a
good practice that others methodologies, like eXtreme Programming, recommend as well. Plus it takes into
account the undeniable fact that if you don't write unit tests first, you never write them.

One last recommendation: keep your unit tests as simple as the ones described here. An application built with
a test driven methodology ends up with roughly as much test code as actual code, so you don't want to spend
time debugging your tests cases...

When a test fails

We will now add the tests to check the second method of the Tag object, which splits a string made of several
tags into an array of tags. Add the following method to the TagTest class:

public function test_splitPhrase()

symfony advent calendar

Unit tests in a symfony project 124/202

http://www.lastcraft.com/unit_test_documentation.php
http://www.lastcraft.com/unit_test_documentation.php
http://en.wikipedia.org/wiki/Test_driven_development
http://en.wikipedia.org/wiki/Extreme_Programming

{
$tests = array(
'foo' => array('foo'),
'foo bar' => array('foo', 'bar'),
' foo bar ' => array('foo', 'bar'),
'"foo bar" askeet' => array('foo bar', 'askeet'),
"'foo bar' askeet" => array('foo bar', 'askeet'),

);

foreach ($tests as $tag => $tags)
{
$this->assertEqual($tags, Tag::splitPhrase($tag));

}
}

Note: As a good practice, we recommend to name the test files out of the class they are
supposed to test, and the test cases out of the methods they are supposed to test. Your test/
directory will soon contain a lot of files, and finding a test might prove difficult in the long
run if you don't.

If you try to run the tests again, they fail:

$ symfony test frontend
Test suite in (test/frontend)
1) Equal expectation fails as key list [0, 1] does not match key list [0, 1, 2] at line [35]
 in test_splitPhrase
 in TagTest
 in /home/production/askeet/test/frontend/TagTest.php
FAILURES!!!
Test cases run: 1/1, Passes: 9, Failures: 1, Exceptions: 0

All right, one of the test cases of test_splitPhrase fails. To find which one it is, you will need to
remove them one at at time to see when the test passes. This time, it's the last one, when we test the handling
of simple quotes. The current Tag::splitPhrase() method doesn't translate this string properly. As part
of your homework, you will have to correct it for tomorrow.

This illustrates the fact that if you pile up too much elementary test cases in an array, a failure is harder to
locate. Always prefer to split long test cases into methods, since Simple Test mentions the name of the
method where a test failed.

Simulating a web browsing session

Web applications are not all about objects that behave more or less like functions. The complex mechanisms
of page request, HTML result and browser interactions require more than what's been exposed before to build
a complete set of unit tests for a symfony web app.

We will examine three different ways to implement a simple web app test. The test has to do a request to the
first question detail, and assume that some text of the answer is present. We will put this test into a
QuestionTest.php file, located in the askeet/test/frontend/ directory.

symfony advent calendar

Simulating a web browsing session 125/202

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

The sfTestBrowser object

Symfony provides an object called sfTestBrowser, which allows to simulate browsing without a browser
and, more important, without a web server. Being inside the framework allows this object to bypass
completely the http transport layer. This means that the browsing simulated by the sfTestBrowser is fast,
and independent of the server configuration, since it does not use it.

Let's see how to do a request for a page with this object:

$browser = new sfTestBrowser();
$browser->initialize();
$html = $browser->get('uri');

// do some test on $html

$browser->shutdown();

The get() request takes a routed URI as a parameter (not an internal URI), and returns a raw HTML page (a
string). You can then proceed to all kinds of tests on this page, using the assert*() methods of the
UnitTestCase object.

You can pass parameters to your call as you would in the URL bar of your browser:

$html = $browser->get('/frontend_test.php/question/what-can-i-offer-to-my-stepmother');

The reason why we use a specific front controller (frontend_test.php) will be explained in the next
section.

The sfTestBrowser simulates a cookie. This means that with a single sfTestBrowser object, you can
require several pages one after the other, and they will be considered as part of a single session by the
framework. In addition, the fact that sfTestBrowser uses routed URIs instead of internal URIs allows you
to test the routing engine.

To implement our web test, the test_QuestionShow() method must be built as follows:

<?php

class QuestionTest extends UnitTestCase
{
 public function test_QuestionShow()

{
$browser = new sfTestBrowser();
$browser->initialize();
$html = $browser->get('frontend_test.php/question/what-can-i-offer-to-my-step-mother');
$this->assertWantedPattern('/My stepmother has everything a stepmother is usually offered/', $html);
$browser->shutdown();

}
}

Since almost all the web unit tests will need a new sfTestBrowser to be initialized and closed after the
test, you'd better move part of the code to the ->setUp() and ->tearDown() methods:

symfony advent calendar

Simulating a web browsing session 126/202

<?php

class QuestionTest extends UnitTestCase
{
 private $browser = null;

 public function setUp()
{
$this->browser = new sfTestBrowser();
$this->browser->initialize();

}

 public function tearDown()
{
$this->browser->shutdown();

}

 public function test_QuestionShow()
{
$html = $this->browser->get('frontend_test.php/question/what-can-i-offer-to-my-step-mother');
$this->assertWantedPattern('/My stepmother has everything a stepmother is usually offered/', $html);

}
}

Now, every new test method that you add will have a clean sfTestBrowser object to start with. You
may recognize here the auto-generated test cases mentioned at the beginning of this tutorial.

The WebTestCase object

Simple Test ships with a WebTestCase class, which includes facilities for navigation, content and cookie
checks, and form handling. Tests extending this class allow you to simulate a browsing session with a http
transport layer. Once again, the Simple Test documentation explains in detail how to use this class.

The tests built with WebTestCase are slower than the ones built with sfTestBrowser, since the web
server is in the middle of every request. They also require that you have a working web server configuration.
However, the WebTestCase object comes with numerous navigation methods on top of the assert*()
ones. Using these methods, you can simulate a complex browsing session. Here is a subset of the
WebTestCase navigation methods:

- - -
get($url,
$parameters)

setField($name, $value)
authenticate($name,
$password)

post($url,
$parameters)

clickSubmit($label) restart()

back()
clickImage($label, $x,
$y)

getCookie($name)

forward()
clickLink($label,
$index)

ageCookies($interval)

We could easily do the same test case as previously with a WebTestCase. Beware that you now need to
enter full URIs, since they will be requested to the web server:

symfony advent calendar

Simulating a web browsing session 127/202

http://www.lastcraft.com/web_tester_documentation.php

require_once('simpletest/web_tester.php');

class QuestionTest extends WebTestCase
{
 public function test_QuestionShow()

{
$this->get('http://askeet/frontend_test.php/question/what-can-i-offer-to-my-step-mother');
$this->assertWantedPattern('/My stepmother has everything a stepmother is usually offered/');

}
}

The additional methods of this object could help us test how a submitted form is handled, for instance to unit
test the login process:

public function test_QuestionAdd()
{

$this->get('http://askeet/frontend_dev.php/');
$this->assertLink('sign in/register');
$this->clickLink('sign in/register');
$this->assertWantedPattern('/nickname:/');
$this->setField('nickname', 'fabpot');
$this->setField('password', 'symfony');
$this->clickSubmit('sign in');
$this->assertWantedPattern('/fabpot profile/');

}

It is very handy to be able to set a value for fields and submit the form as you would do by hand. If you had to
simulate that by doing a POST request (and this is possible by a call to ->post($uri, $parameters)),
you would have to write in the test function the target of the action and all the hidden fields, thus depending
too much on the implementation. For more information about form test with Simple Test, read the related
chapter of the Simple Test documentation.

Selenium

The main drawback of both the sfTestBrowser and the WebTestCase tests is that they cannot simulate
JavaScript. For very complex interactions, like with AJAX interactions for instance, you need to be able to
reproduce exactly the mouse and keyboard inputs that a user would do. Usually, these tests are reproduced by
hand, but they are very time consuming and prone to error.

The solution, this time, comes from the JavaScript world. It is called Selenium and is better when employed
with the Selenium Recorder extension for Firefox. Selenium executes a set of action on a page just like a
regular user would, using the current browser window.

Selenium is not bundled with symfony by default. To install it, you need to create a new selenium/
directory in your web/ directory, and unpack there the content of the Selenium archive. This is because
Selenium relies on JavaScript, and the security settings standard in most browsers wouldn't allow it to run
unless it is available on the same host and port as your application.

Note: Beware not to transfer the selenium/ directory to your production host, since it
would be accessible from the outside.

symfony advent calendar

Simulating a web browsing session 128/202

http://www.lastcraft.com/form_testing_documentation.php
http://www.lastcraft.com/form_testing_documentation.php
http://selenium.thoughtworks.com/
http://seleniumrecorder.mozdev.org/
http://www.openqa.org/selenium/download.action

Selenium tests are written in HTML and stored in the selenium/tests/ directory. For instance, to do the
simple unit test about question detail, create the following file called testQuestion.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
 <meta content="text/html; charset=UTF-8" http-equiv="content-type">
 <title>Question tests</title>
</head>
<body>
<table cellspacing="0">
<tbody>
 <tr><td colspan="3">First step</td></tr>

 <tr>
 <td>open</td>
 <td>/frontend_test.php/</td>
 <td> </td>
 </tr>

 <tr>
 <td>clickAndWait</td>
 <td>link=What can I offer to my step mother?</td>
 <td> </td>
 </tr>

 <tr>
 <td>assertTextPresent</td>
 <td>My stepmother has everything a stepmother is usually offered</td>
 <td> </td>
 </tr>

</tbody>
</table>
</body>
</html>

A test-case is represented by an HTML document, containing a table with 3 columns: command, target, value.
Not all commands take a value, however. In this case either leave the column blank or use a to make
the table look better.

You also need to add this test to the global test suite by inserting a new line in the table of the
TestSuite.html file, located in the same directory:

...
<tr><td>My First Test</td></tr>
...

To run the test, simply browse to

http://askeet/selenium/index.html

Select 'Main Test Suite', than click on the button to run all tests, and watch your browser as it reproduces the
steps that you have told him to do.

symfony advent calendar

Simulating a web browsing session 129/202

Note: As Selenium tests run in a real browser, they also allow you to test browser
inconsistencies. Build your test with one browser, and test them on all the others on which
your site is supposed to work with a single request.

The fact that Selenium tests are written in HTML could make the writing of Selenium tests a hassle. But
thanks to the Firefox Selenium extension, all it takes to create a test is to execute the test once in a recorded
session. While navigating in a recording session, you can add assert-type tests by right clicking in the browser
window and selecting the appropriate check under the Append Selenium Command in the pop-up menu.

For instance, the following Selenium test checks the AJAX rating of a question. The user 'fabpot' logs in,
displays the second page of questions to access the only one he's not interested in so far, then clicks the
'interested?' link, and checks that it changes the '?' into a '!'. It was all recorded with the Firefox extension, and
it took less than 30 seconds:

<html>
<head><title>New Test</title></head>

symfony advent calendar

Simulating a web browsing session 130/202

<body>
<table cellpadding="1" cellspacing="1" border="1">
<thead>
<tr><td rowspan="1" colspan="3">New Test</td></tr>
</thead><tbody>
<tr>
 <td>open</td>
 <td>/frontend_dev.php/</td>
 <td></td>
</tr>
<tr>
 <td>clickAndWait</td>
 <td>link=sign in/register</td>
 <td></td>
</tr>
<tr>
 <td>type</td>
 <td>//div/input[@value="" and @id="nickname" and @name="nickname"]</td>
 <td>fabpot</td>
</tr>
<tr>
 <td>type</td>
 <td>//div/input[@value="" and @id="password" and @name="password"]</td>
 <td>symfony</td>
</tr>
<tr>
 <td>clickAndWait</td>
 <td>//input[@type='submit' and @value='sign in']</td>
 <td></td>
</tr>
<tr>
 <td>clickAndWait</td>
 <td>link=2</td>
 <td></td>
</tr>
<tr>
 <td>click</td>
 <td>link=interested?</td>
 <td></td>
</tr>
<tr>
 <td>pause</td>
 <td>3000</td>
 <td></td>
</tr>
<tr>
 <td>verifyTextPresent</td>
 <td>interested!</td>
 <td></td>
</tr>
<tr>
 <td>clickAndWait</td>
 <td>link=sign out</td>
 <td></td>
</tr>

</tbody></table>
</body>
</html>

symfony advent calendar

Simulating a web browsing session 131/202

Don't forget to reinitialize the test data (by calling php batch/load_data.php) before launching the
Selenium test.

Note: We had to manually add a pause action after the click on the AJAX link, since
Selenium wouldn't go ahead of the test otherwise. This is a general advice for testing AJAX
interactions with Selenium.

You can save the test to a HTML file to build a Test Suite for your application. The Firefox extension even
allows you to run the Selenium tests that you have recorded with it.

A few words about environments

Web tests have to use a front controller, and as such can use a specific environment (i.e. configuration).
Symfony provides a test environment to every application by default, specifically for unit tests. You can
define a custom set of settings for it in your application config/ directory. The default configuration
parameters are (extract from askeet/apps/frontend/config/settings.yml):

test:
 .settings:
 # E_ALL | E_STRICT & ~E_NOTICE = 2047
 error_reporting: 2047
 cache: off
 stats: off
 web_debug: off

The cache, the stats and the web_debug toolbar are set to off. However, the code execution still leaves traces
in a log file (askeet/log/frontend_test.log). You can have specific database connection settings,
for instance to use another database with test data in it.

This is why all the external URIs mentioned above show a frontend_test.php: the test front
controller has to be specified - otherwise, the default index.php production controller will be used in place,
and you won't be able to use a different database or to have separate logs for your unit tests.

Note: Web tests are not supposed to be launched in production. They are a developer tool,
and as such, they should be run in the developer's computer, not in the host server.

See you Tomorrow

There is no perfect solution for unit testing PHP applications built with symfony for now. Each of the three
solutions presented today have great advantages, but if you have an extensive approach of unit testing, you
will probably need to use all the three. As for askeet, unit tests will be added little by little in the SVN source.
Check for it every now and then, or propose your own to increase the solidity of the application.

Unit testing can also be used to avoid regression. Refactoring a method can create new bugs that didn't use to
appear before. That's why it is also a good practice to run all unit tests before deploying a new realease of an
application in production - this is called regression testing. We will talk more about it when we deal with
application deployement.

symfony advent calendar

A few words about environments 132/202

http://en.wikipedia.org/wiki/Regression_testing

Tomorrow... well, tomorrow will be another day. If you have any questions about today's tutorial, feel free to
ask them in the askeet forum.

symfony advent calendar

See you Tomorrow 133/202

http://www.symfony-project.com/forum/index.php/f/8/

symfony advent calendar day sixteen: Lazy day
After fifteen hours of hard work, we all deserve some time off. So we have decided to declare the sixteenth
day the lazy day, because getting some rest is always a good thing when developing web applications. There is
no symfony tutorial published today, but there is still a lot to learn.

A lazy day is an important part of the lifetime of a project. It gives you the opportunity to go and see what
happens in the outer world, grab new ideas and come back fresh and full of energy for the future. To be
honest, we had planned this day from the very beginning, because that's part of the symfony philosophy: If it
takes less time to actually develop an application, then you have more time to stand back a bit from things,
and to think about improvements.

Today will also be the time to experiment one of the principles of web 2.0 applications: They are always
released at a (too) early stage. Not only does it give time to the search engines to visit them, but it also creates
a solid group of early users, who will be able to say in the near future: "I was there when it got started". And
those people, if they actually like your application, are the best evangelists that you can find. Of course,
releasing an unfinished application adds an important constraint to the course of the project: Non-backward
compatible changes will be painful, since there already are users and data based on previous versions. But the
benefits are almost always more important than the drawbacks. In addition, seeing the AJAX interactions that
were developed during the past days in action is a much better illustration than any screen capture.

That means that the askeet website is now open to the public, and you are invited to test it and report any
inconvenience that you may experience. But don't talk about it too much yet, because we planned a stress test
for the end of the calendar and we will need that a lot of people - including all your friends and relatives -
come to visit it that day.

You will probably notice quite a lot of little changes, mostly in the design of the application. We couldn't
possibly release askeet without rounded corner boxes and psychedelic colors, so we worked a bit on every
page and more on the stylesheets. The detail of the changes can be seen in the askeet trac timeline. You can
still download the source from the askeet SVN repository or, and that's the news of the day, directly a .tgz
archive.

See you Tomorrow

Askeet is online, but far from being finished. The next days will be tough ones, since we will have to develop
web services, a back-office, cache and performance improvements, internationalization, and a mysterious
feature that you have to decide.

So make sure you come back tomorrow for the last week of the symfony advent calendar.

symfony advent calendar

symfony advent calendar day sixteen: Lazy day 134/202

http://www.askeet.com/
http://trac.askeet.com/trac/changeset/35
http://svn.askeet.com/tags/release_day_16/
http://www.symfony-project.com/downloads/askeet/release_day_16.tgz
http://www.symfony-project.com/downloads/askeet/release_day_16.tgz

symfony advent calendar day seventeen: API

Previously on symfony

The askeet application was just put online yesterday, and we already have a lot of feedback about feature
tweaking and additions. The user input is fundamental to the design of a web 2.0 application, and even if the
concept of the application is new, it has to be experimented with as soon as possible.

But we will add unplanned functionalities on day 21. Before that, we have scheduled a handful of advanced
web application development techniques to show you through askeet, and the first to be revealed today is the
programming of an external API requiring an HTTP authentication.

As we made quite a lot of little changes yesterday, you are strongly advised to start today's tutorial with a
fresh downloaded version of askeet from the day 16 tagged version in the askeet repository.

The API

An Application Programming Interface, or API, is a developer's interface to a particular service on your
application, so that it can be included in external websites. Think about Google Maps or Flickr, which are
used to extend lots of websites over the Internet thanks to their APIs.

Askeet makes no exception, and we believe that in order to increase the service's popularity, it has to be made
available to other websites. The RSS feed developed during day 11 was a first approach to that requirement,
but we can do much better.

Askeet will provide an API of answers to a question asked by the user. The access to this API will be
restricted to registered askeet users, through HTTP authentication. The API response format chosen is
Representational State Transfer, or REST - that means that the response is a simple XML block similar to
most of the output of main APIs in the web:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok" version="1.0">

<question href="http://www.askeet.com/question/what-shall-i-do-tonight-with-my-girlfriend" time="2005-11-21T21:19:18Z" >
<title>What shall I do tonight with my girlfriend?</title>
<tags>

<tag>activities</tag>
<tag>relatives</tag>
<tag>girl</tag>

<tags>
<answers>

<answer relevancy="50" time="2005-11-22T12:21:53Z">You can try to read her poetry. Chicks love that kind of things.</answer>
<answer relevancy="0" time="2005-11-22T15:45:03Z">Don't bring her to a doughnuts shop. Ever. Girls don't like to be seen eating with their fingers - although it's nice.</answer>

</answers>
</question>

</rsp>

We will implement the API in a new module of the frontend application, so use the command line to build
the module skeleton:

symfony advent calendar

symfony advent calendar day seventeen: API 135/202

http://www.askeet.com
http://svn.askeet.com/tags/release_day_17/
http://en.wikipedia.org/wiki/Application_programming_interface
http://www.google.com/apis/maps/
http://www.flickr.com/services/api/response.rest.html
http://en.wikipedia.org/wiki/REST

$ symfony init-module frontend api

HTTP Authentication

We choose to limit the use of the API to registered askeet users. For that, we will use the HTTP authentication
process, which is a built-in authentication mechanism of the HTTP protocol. It is different from the web
authentication that we have seen previously because it doesn't even require a web page - all the exchanges
take place in the HTTP headers.

We will need the authentication method included in a custom validator during day six, so first of all we will
do some refactoring and relocate the login code in the UserPeer model class:

public static function getAuthenticatedUser($login, $password)
{

$c = new Criteria();
$c->add(UserPeer::NICKNAME, $login);
$user = UserPeer::doSelectOne($c);

// nickname exists?
if ($user)
{
// password is OK?
if (sha1($user->getSalt().$password) == $user->getSha1Password())
{
return $user;

}
}

return null;
}

The new class method UserPeer::getAutenticatedUser() can now be used in the
myLoginValidator.class.php (we'll leave that to you) and in the new api/index web service:

<?php

class apiActions extends sfActions
{
 public function preExecute()

{
 sfConfig::set('sf_web_debug', false);

}

 public function executeIndex()
{
$user = $this->authenticateUser();
if (!$user)
{
$this->error_code = 1;
$this->error_message = 'login failed';

$this->forward('api', 'error');
}
// do some stuff

}

symfony advent calendar

The API 136/202

http://www.php.net/static
http://www.php.net/sha1

 private function authenticateUser()
{
if (isset($_SERVER['PHP_AUTH_USER']))
{
if ($user = UserPeer::getAuthenticatedUser($_SERVER['PHP_AUTH_USER'], $_SERVER['PHP_AUTH_PW']))
{
$this->getContext()->getUser()->signIn($user);

return $user;
}

}

header('WWW-Authenticate: Basic realm="askeet API"');
header('HTTP/1.0 401 Unauthorized');

}

 public function executeError()
{
}

}

?>

First of all, before executing any action of the API module (thus in the preExecute() method), we turn off
the web debug toolbar. The view of this action being XML, the insertion of the toolbar code would produce a
non-valid response.

The first thing that the index action will do is to check whether a login and a password are provided, and if
they match an existing askeet account. If that is not the case, the authenticateUser() method sets the
response HTTP header to '401'. It will cause an HTTP authentication window to pop-up in the user's browser;
the user will have to resubmit the request with the login and password.

// first request to the API, without authentication
GET /api/index HTTP/1.1
Host: mysite.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; fr; rv:1.8) Gecko/20051111 Firefox/1.5
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
...

// the API returns a 401 header with no content
HTTP/1.x 401 Authorization Required
Date: Thu, 15 Dec 2005 10:32:44 GMT
Server: Apache
WWW-Authenticate: Basic realm="Order Answers Feed"
Content-Length: 401
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=iso-8859-1

// a login box will then appear on the user's window.
// Once the user enters his login/password, a new GET is sent to the server
GET /api/index HTTP/1.1
Host: mysite.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; fr; rv:1.8) Gecko/20051111 Firefox/1.5
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

symfony advent calendar

HTTP Authentication 137/202

http://www.php.net/isset
http://www.php.net/header
http://www.php.net/header

...
Authorization: Basic ZmFicG90OnN5bWZvbnk=

An Authorization attribute is added to the HTTP request, which is sent again. It contains a [base
64][http://en.wikipedia.org/wiki/Base64] encoded 'login:password' string. This is what the
$_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW'] look for in our
authenticateUser() method.

Note: Base64 does not output an encrypted version of its input. Decoding a base64-encoded
string is [very easy][http://makcoder.sourceforge.net/demo/base64.php], and it reveals the
password in clear. For instance, decoding the string ZmFicG90OnN5bWZvbnk= gives
fabpot:symfony. So you have to consider that the password transits in clear in the
Internet (as when entered in a web form) and can be intercepted. HTTP authentication must
be restricted to non-critical content and services for this reason. Added protection could be
gained by requiring the HTTPS protocol for API calls as well.

If a login and password are provided and exist in the user database, then the index action executes.
Otherwise, it forwards to the error action (empty) and displays the errorSuccess.php template:

<?php echo '<?' ?>xml version="1.0" encoding="utf-8" ?>
<rsp stat="fail" version="1.0">
 <err code="<?php echo $error_code ?>" msg="<?php echo $error_message ?>" />
</rsp>

Of course, you have to set all the views of the api module to a XML content-type, and to deactivate the
decorator. This is done by adding a view.yml file in the
askeet/apps/frontend/modules/api/config/ directory:

all:
 has_layout: off

 http_metas:
 content-type: text/xml

Note: The reason why the index action returns a forward('api', 'error') instead
of a sfView::ERROR in case of error is because all of the actions of the api module use
the same view. Imagine that both our index action and another one, for instance popular,
end up with sfView::ERROR: we would have to serve two identical error views
(indexError.php and popularError.php) with the same content. The choice of a
forward() limits the repetition of code. However, it forces the execution of another action.
A similar result can be achieved in a much cheaper way by calling return
array('api', 'errorSuccess'); instead: This mentions the view that has to be
executed, and bypasses the action completely.

API response

Building an XML response is exactly like building an XHTML page. So none of the following should surprise
you now that you have 16 days of symfony behind you.

symfony advent calendar

API response 138/202

http://www.php.net/echo
http://www.php.net/stat

api/index action

public function executeQuestion()
{

$user = $this->authenticateUser();
if (!$user)
{
$this->error_code = 1;
$this->error_message = 'login failed';

$this->forward('api', 'error');
}

if (!$this->getRequestParameter('stripped_title'))
{
$this->error_code = 2;
$this->error_message = 'The API returns answers to a specific question. Please provide a stripped_title parameter';

$this->forward('api', 'error');
}
else
{

// get the question
$question = QuestionPeer::getQuestionFromTitle($this->getRequestParameter('stripped_title'));

if ($question->getUserId() != $user->getId())
{
$this->error_code = 3;
$this->error_message = 'You can only use the API for the questions you asked';

$this->forward('api', 'error');
}
else
{
// get the answers
$this->answers = $question->getAnswers();
$this->question = $question;

}
}

}

questionSuccess.php template

<?php echo '<?' ?>xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok" version="1.0">
 <question href="<?php echo url_for('@question?stripped_title='.$question->getStrippedTitle(), true) ?>" time="<?php echo strftime('%Y-%m-%dT%H:%M:%SZ', $question->getCreatedAt('U')) ?>">
 <title><?php echo $question->getTitle() ?></title>
 <tags>

<?php foreach ($sf_user->getSubscriber()->getTagsFor($question) as $tag): ?>
 <tag><?php echo $tag ?></tag>

<?php endforeach ?>
 </tags>
 <answers>

<?php foreach ($answers as $answer): ?>
 <answer relevancy="<?php echo $answer->getRelevancyUpPercent() ?>" time="<?php echo strftime('%Y-%m-%dT%H:%M:%SZ', $answer->getCreatedAt('U')) ?>"><?php echo $answer->getBody() ?></answer>

<?php endforeach ?>
 </answers>

symfony advent calendar

API response 139/202

http://www.php.net/echo
http://www.php.net/stat
http://www.php.net/time
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/time
http://www.php.net/echo

 </question>
</rsp>

Add a new routing rule for this API call:

api_question:
 url: /api/question/:stripped_title
 param: { module: api, action: question }

Test it

As the response of a REST API is simple XML, you can test it with a simple browser by requiring:

http://askeet/api/question/what-shall-i-do-tonight-with-my-girlfriend

Integrating an external API

Integrating an external API is not any harder than reading XML in PHP. As there is no immediate interest to
integrate an existing external API in askeet, we will describe in a few words how to integrate the askeet API
in a foreign website - whether built with symfony or not.

PHP5 comes bundled with SimpleXML, a very easy-to-use set of tools to interpret and loop through an XML
document. With SimpleXML, element names are automatically mapped to properties on an object, and this
happens recursively. Attributes are mapped to iterator accesses.

To reconstitute the list of answers to a question provided by the API into a simple page, all it takes is these
few lines of PHP:

<?php $xml = simplexml_load_file(dirname(__FILE__).'/question.xml') ?>

<h1><?php echo $xml->question->title ?></h1>
<p>Published on <?php echo $xml->question['time'] ?></p>

<h2>Tags</h2>

<?php foreach ($xml->question->tags->tag as $tag): ?>
 <?php echo $tag ?>

<?php endforeach ?>

<h2>Answers to this question from askeet users</h2>

<?php foreach ($xml->question->answers->answer as $answer): ?>

<?php echo $answer ?>

 Relevancy: <?php echo $answer['relevancy'] ?>% - Pulished on <?php echo $answer['time'] ?>

<?php endforeach ?>

symfony advent calendar

API response 140/202

http://www.zend.com/php5/articles/php5-simplexml.php
http://www.php.net/dirname
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo

Paypal donation

While we talk about external APIs, some of them are very simple to integrate and can bring a lot to your site.
The Paypal donation API is a simple chunk of HTML code in which the email of the accountant must be
included.

Wouldn't it be a good motivation for askeet users who generously answer questions to be able to receive a
small donation from all the happy users who found their answer useful? The 'Donate' button could appear on
the user profile page, and link to his/her Paypal donation page.

First, add a has_paypal column to the User table in the schema.xml:

<column name="has_paypal" type="boolean" default="0" />

Rebuild the model, and add to the user/show template the following code:

<?php if ($subscriber->getHasPaypal()): ?>
<p>If you appreciated this user's contributions, you can grant him a small donation.</p>
<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
 <input type="hidden" name="cmd" value="_xclick">
 <input type="hidden" name="business" value="<?php echo $subscriber->getEmail() ?>">
 <input type="hidden" name="item_name" value="askeet">
 <input type="hidden" name="return" value="http://www.askeet.com">
 <input type="hidden" name="no_shipping" value="1">
 <input type="hidden" name="no_note" value="1">
 <input type="hidden" name="tax" value="0">
 <input type="hidden" name="bn" value="PP-DonationsBF">
 <input type="image" src="http://images.paypal.com/home/production/sfweb/web/images/x-click-but04.gif" border="0" name="submit" alt="Donate to this user">
</form>
<?php endif ?>

Now a user must be given the opportunity to declare a Paypal account linked to his/her email address. It will
be a good occasion to allow a user to modify his/her profile. If a logged user displays his/her own profile, an
'edit profile' must appear. It will link to a user/edit action, used both to display the form and to handle the
form submission. The 'edit profile' form will allow the modification of the password and the email address.
The nickname, as it is used as a key, cannot be modified. Since you are familiar with symfony by now, the
code will not be described here but included in the SVN repository.

See you Tomorrow

Developing a web service or integrating an external one should not give you any difficulty with symfony

Tomorrow will be the occasion to talk about filters, and to divide askeet.com in sub projects such as
php.askeet.com and symfony.askeet.com with only a few lines of code. If you were not convinced about
development speed and power with symfony, you may change your mind then.

As usual, today's code has been committed to the askeet SVN repository, under the
/tags/release_day_17 tag. Questions ans suggestions about askeet and the advent calendar tutorials
are welcome in the askeet forum. See you tomorrow!

symfony advent calendar

Paypal donation 141/202

http://www.paypal.com
http://svn.askeet.com/tags/release_day_17/
http://www.symfony-project.com/forum/index.php/f/8/

symfony advent calendar day eighteen: Filters

Previously on symfony

We saw yesterday how to make the askeet service available through an XML API. Today's program will focus
on filters, and we will illustrate their use with the creation of sub domains to askeet. For instance,
'php.askeet.com' will display only PHP tagged questions, and any new question posted in this domain will be
tagged with 'php'. Let's call this new feature 'askeet universe' and develop it right away.

Configurable feature

First, this new feature has to be optional. Askeet is supposed to be a piece of software that you can install on
any configuration, and you might not want to allow subdomains in, say, an enterprise Intranet.

So we will add a new parameter in the application configuration. To enable the universe feature, it must be set
to on. To add a custom parameter, open the askeet/apps/frontend/config/app.yml file and add:

all:
 .global:
 universe: on

This parameter is now available to all the actions of your application. To get its value, use the
sfConfig::get('app_universe') call.

You will find more about custom settings in the configuration chapter of the symfony book.

Create a filter

A filter is a piece of code executed before every action. That's what we need to inspect the host name prior to
all actions, in search for a tag name in the domain.

Filters have to be declared in a special configuration file to be executed, the
askeet/apps/frontend/config/filters.yml file. This file is created by default when you
initiate an application, and it is empty. Open it and add in:

myTagFilter:
 class: myTagFilter

This declares a new myTagFilter filter. We will create a myTagFilter.class.php class file in the
askeet/apps/frontend/lib/ directory to make it available to the whole frontend application:

<?php

class myTagFilter extends sfFilter
{
 public function execute ($filterChain)

{
// execute this filter only once

symfony advent calendar

symfony advent calendar day eighteen: Filters 142/202

http://www.symfony-project.com/content/book/page/configuration.html

if (sfConfig::get('app_universe') && $this->isFirstCall())
{
// do things

}

// execute next filter
$filterChain->execute();

}
}

?>

This is the general structure of a filter. If the app_universe parameter is not set to on, the filter doesn't
execute. As we want the filter to be executed only once per request (although there may be more than one
action per request, because we use forwards), we check the ->isFirstCall() method. It is true only
the first time the filter is executed in a given request.

One word about the filterChain object: All the steps of the execution of a request (configuration, front
controller, action, view) are a chain of filters. A custom filter just comes very early in this chain (before the
execution of an action), and it must not break the execution of the other steps of the chain filter. That's why a
custom filter must always end up with $filterChain->execute();.

Note: The sfFilter class has an initialize() method, executed when the filter object
is created. You can override it in your custom filter if you need to deal with filter parameters
in your own way.

Get a permanent tag from the domain name

We want to inspect the host name to check if it contains a sub domain that might be a tag. Tags like 'www' or
'askeet' must be ignored. In addition, we want to be able to modify the rule of sub domains to ignore, for
instance if we use load balancing techniques with alternative domain names such as 'www1', 'www2', etc. This
is why we decided to put the rule of universes to ignore (a regular expression) in a parameter of the
filters.yml configuration file:

myTagFilter:
 class: myTagFilter
 param:
 host_exclude_regex: /^(www|askeet)/

Now it is time to have a look at the content of the execute() action of the filter (replacing the // do
things comment):

// is there a tag in the hostname?
$hostname = $this->getContext()->getRequest()->getHost();
if (!preg_match($this->getParameter('host_exclude_regex'), $hostname) && $pos = strpos($hostname, '.'))
{

$tag = Tag::normalize(substr($hostname, 0, $pos));

// add a permanent tag custom configuration parameter
 sfConfig::set('app_permanent_tag', $tag);

// add a custom stylesheet

symfony advent calendar

Create a filter 143/202

http://www.php.net/preg_match
http://www.php.net/strpos
http://www.php.net/substr

$this->getContext()->getResponse()->addStylesheet($tag);
}

The filter looks for a possible permanent tag in the URI. If one is found, it is added as a custom parameter,
and a custom stylesheet is added to the view. So, for instance:

// calling this URI to display the PHP universe
http://php.askeet.com

// will create a constant
sfConfig::set('app_permanent_tag', 'php');

// and include a custom stylesheet in the view
<link rel="stylesheet" type="text/css" media="screen" href="/css/php.css" />

Note: As the execution of a custom filter happens very early in the filter chain, and even
earlier than the view configuration parsing, the custom stylesheet will appear in the output
HTML file before the other style sheets. So if you have to override style settings of the main
askeet site in a custom stylesheet, these settings need to be declared !important.

Model modifications

We now need to modify the actions and model methods that should take the permanent tag into account. As
we like to keep the model logic inside the Model layer, and because refactoring becomes really necessary, we
take advantage of the permanent tag modifications to take the Propel requests out of the actions, and put them
in the model. If you take a look at the list of modifications for today's release in the askeet trac, you will see
that a few new model methods were created, and that the actions call these methods instead of doing
doSelect() by themselves:

Answer->getRecent()
Question->getPopularAnswers()
QuestionPeer::getPopular()
QuestionPeer::getRecent()
QuestionTagPeer::getForUserLike()

Filter lists according to the permanent tag

When a list of questions, tags, or answers are displayed in an askeet universe, all the requests must take into
account a new search parameter. In symfony, search parameters are calls to the ->add() method of the
Criteria object.

So add the following method to the QuestionPeer and AnswerPeer classes:

private static function addPermanentTagToCriteria($criteria)
{

if (sfConfig::get('app_permanent_tag'))
{
$criteria->addJoin(self::ID, QuestionTagPeer::QUESTION_ID, Criteria::LEFT_JOIN);
$criteria->add(QuestionTagPeer::NORMALIZED_TAG, sfConfig::get('app_permanent_tag'));
$criteria->setDistinct();

}

symfony advent calendar

Get a permanent tag from the domain name 144/202

http://trac.askeet.com/trac/changeset/40
http://www.php.net/static

return $criteria;
}

We now need to look for all the model methods that return a list that must be filtered in a universe, and add to
the Criteria definition the following line:

$c = self::addPermanentTagToCriteria($c);

For instance, the QuestionPeer::getHomepagePager() has to be modified to look like:

public static function getHomepagePager($page)
{

$pager = new sfPropelPager('Question', sfConfig::get('app_pager_homepage_max'));
$c = new Criteria();
$c->addDescendingOrderByColumn(self::INTERESTED_USERS);

// add this line
$c = self::addPermanentTagToCriteria($c);

$pager->setCriteria($c);
$pager->setPage($page);
$pager->setPeerMethod('doSelectJoinUser');
$pager->init();

return $pager;
}

The same modification must be repeated quite a few times, in the following methods:

QuestionPeer::getHomepagePager()
QuestionPeer::getPopular()
QuestionPeer::getPopular()
QuestionPeer::getRecentPager()
QuestionPeer::getRecent()
AnswerPeer::getPager()
AnswerPeer::getRecentPager()
AnswerPeer::getRecent()

For complex requests not using the Criteria object, we need to add the permanent tag as a WHERE
statement in the SQL code. Check how we did it for the QuestionTagPeer::getPopularTags() and
QuestionTagPeer::getPopularTagsFor() methods in the askeet trac or in the SVN repository.

Lists of tags for a question or a user

All the questions of the 'PHP' universe are tagged with 'php'. But if a user is browsing questions in the 'PHP'
universe, the 'php' tag must not be displayed in the list of tags since it is implied. When outputting a list of
tags for a question or a user in a universe, the permanent tag must be omitted. This can be done easily by
bypassing it in loops, as for instance in the Question->getTags() method:

public function getTags()
{

$c = new Criteria();

symfony advent calendar

Model modifications 145/202

http://www.php.net/static
http://trac.askeet.com/trac/browser/trunk/lib/model/QuestionTagPeer.php?rev=40
http://svn.askeet.com/tags/release_day_18/

$c->add(QuestionTagPeer::QUESTION_ID, $this->getId());
$c->addGroupByColumn(QuestionTagPeer::NORMALIZED_TAG);
$c->setDistinct();
$c->addAscendingOrderByColumn(QuestionTagPeer::NORMALIZED_TAG);

$tags = array();
foreach (QuestionTagPeer::doSelect($c) as $tag)
{

if (sfConfig::get('app_permanent_tag') == $tag)
{
continue;

}

$tags[] = $tag->getNormalizedTag();
}

return $tags;
}

The same kind of technique is to be used in the following methods:

Question->getTags()
Question->getPopularTags()
User->getTagsFor()
User->getPopularTags()

Append the permanent tag to new questions

When a question is created in an askeet universe, it must be tagged with the permanent tag in addition to the
tags entered by the user. As a reminder, in the question/add method, the
Question->addTagsForUser() method is called:

$question->addTagsForUser($this->getRequestParameter('tag'), $sf_user->getId());

...where the tag request parameters contains the tags entered by the user, separated by blanks (we called this
a 'phrase'). So we will just append the permanent tag to the phrase in the first line of the addTagsForUser
method:

public function addTagsForUser($phrase, $userId)
{

// split phrase into individual tags
$tags = Tag::splitPhrase($phrase.(sfConfig::get('app_permanent_tag') ? ' '.sfConfig::get('app_permanent_tag') : ''));

// add tags
foreach ($tags as $tag)
{

$questionTag = new QuestionTag();
$questionTag->setQuestionId($this->getId());
$questionTag->setUserId($userId);
$questionTag->setTag($tag);
$questionTag->save();

}
}

symfony advent calendar

Model modifications 146/202

http://www.php.net/array

That's it: if the user hasn't already included the permanent tag, it is added to the list of tags to be given to the
new question.

Server configuration

In order to make the new domains available, you have to modify your web server configuration.

In local, i.e. if you don't control the DNS to the askeet site, add a new host for each new universe that you
want to add (in the /etc/hosts file in a Linux system, or in the
C:\WINDOWS\system32\drivers\etc\hosts file in a Windows system):

127.0.0.1 php.askeet
127.0.0.1 senseoflife.askeet
127.0.0.1 women.askeet

Note: You need administrator rights to do this.

In all cases, you have to add a server alias in your virtual host configuration (in the httpd.conf Apache
file):

<VirtualHost *:80>
 ServerName askeet
 ServerAlias *.askeet
 DocumentRoot "/home/sfprojects/askeet/web"
 DirectoryIndex index.php
 Alias /sf /usr/local/lib/php/data/symfony/web/sf

 <Directory "/home/sfprojects/askeet/web">
 AllowOverride All
 </Directory>
</VirtualHost>

After restarting the web server, you can test one of the universes by requesting, for instance:

http://php.askeet/

See you Tomorrow

Filters are powerful, and can be used for all kinds of things. Tags allow us to customize content according to a
specific theme. Combining tags and filters helped us to partition askeet into several universes, and the
possibilities of specialized askeet sites (think about music.askeet.com, programming.askeet.com or
doityourself.askeet.com) are endless. As all these sites can be skinned differently, and since the content of the
specialized sites still appear in the global askeet site, askeet gets the best of community-based web
applications. Universes are small enough to allow a community to build up, and the global site can become
the best place to look for the answer to any kind of question.

Tomorrow, we will focus on performance and see how HTML cache can boost the delivery time of complex
pages. In three days comes the mysterious functionality, there is still time for you to vote for the best idea.
You can still pay a visit to the askeet forum and see how the askeet website behaves online.

symfony advent calendar

Server configuration 147/202

http://www.symfony-project.com/forum/index.php/f/8/
http://www.askeet.com/

symfony advent calendar day nineteen:
Performance and cache

Previously on symfony

As the advent calendar days pass, you are getting more comfortable with the symfony framework and its
concepts. Developing an application like askeet is not very demanding if you follow the good practices of
agile development. However, one thing that you should do as soon as a prototype of your website is ready is
to test and optimize its performance.

The overhead caused by a framework is a general concern, especially if your site is hosted in a shared server.
Although symfony doesn't slow down the server response time very much, you might want to see it yourself
and tweak the code to speed up the page delivery. So today's tutorial will be focused on the performance
measurement and improvement.

Load testing tools

Unit tests, described during the fifteenth day, can validate that the application works as expected if there is
only one user connected to it at a time. But as soon as you release your application on the Internet - and that's
the least we can wish for you - hordes of hectic fans will rush to it simultaneously, and performance issues
may occur. The web server might even fail and need a manual restart, and this is a really painful experience
that you should prevent at all costs. This is especially important during the early days of your application,
when the first users quickly draw conclusions about it and decide to spread the word or not.

To avoid performance issues, it is necessary to simulate numerous concurrent access to your website to see
how it reacts - before releasing it. This is called load testing. Basically, you program an automate to post
concurrent requests to your web server, and measure the return time.

Note: Whatever load testing tool you choose, you should execute it on a different server than
the one running the website. This is because the testing tools are generally CPU consuming,
and their own activity could perturb the results of the server performance. In addition, do your
tests in a local network, to avoid disturbance due to the external network components (proxy,
firewall, cache, router, ISP, etc.).

JMeter

The most common load testing tool is JMeter, and it is an open-source Java application maintained by the
Apache foundation. It has impressive online documentation to help you get started using it, including a good
introduction about load testing.

To install it, retrieve the latest stable version (currently 2.1.1) in the Jmeter download page. You'll also need
the latest version of the Java runtime environment which you can find on Sun's site. To start JMeter, locate
and run the jmeter.bat file (in Windows platforms) or type java jmeter.jar (in Linux platforms).

symfony advent calendar

symfony advent calendar day nineteen: Performance and cache 148/202

http://en.wikipedia.org/wiki/Load_testing
http://jakarta.apache.org/jmeter/
http://jakarta.apache.org/jmeter/usermanual/index.html
http://jakarta.apache.org/jmeter/usermanual/boss.html
http://jakarta.apache.org/site/downloads/index.html#jmeter_binaries
http://en.wikipedia.org/wiki/Java_programming_language#Java_Runtime_Environment
http://java.com/en/download/index.jsp

The way to setup a load testing plan, called 'Web test plan', is described in detail in the related page of the
JMeter documentation, so we will not describe it here.

Note: Not only does JMeter report about average response time for a given request or set of
requests, it can also do assertions on the content of the page it receives. So, in addition to
using JMeter as a load testing tool, you can build scenarios to do regression tests and unit
tests.

Apache's ab

The second tool recommended by symfony is ApacheBench, or ab, another nice utility brought to you by the
Apache foundation. Its online manual is less detailed than JMeter's, but as ab is a command line tool, it is
easier to use.

symfony advent calendar

Load testing tools 149/202

http://jakarta.apache.org/jmeter/usermanual/build-web-test-plan.html
http://httpd.apache.org/docs/2.2/programs/ab.html

In Linux, it comes standard with the Apache package, so if you have an installed Apache server, you should
find it in /usr/local/apache/bin/ab. In Windows platforms, it is much harder to find, so you'd better
download it directly from symfony.

The use of this benchmarking tool is very simple:

$ /usr/local/bin/apache2/bin/ab -c 1 -n 1 http://www.askeet.com/
This is ApacheBench, Version 2.0.41-dev <$Revision: 1.121.2.12 $> apache-2.0
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Copyright 1998-2002 The Apache Software Foundation, http://www.apache.org/

Benchmarking www.askeet.com (be patient).....done

Server Software: Apache
Server Hostname: www.askeet.com
Server Port: 80

Document Path: /
Document Length: 15525 bytes

Concurrency Level: 1
Time taken for tests: 0.596104 seconds
Complete requests: 1
Failed requests: 0
Write errors: 0
Total transferred: 15874 bytes
HTML transferred: 15525 bytes
Requests per second: 1.68 [#/sec] (mean)
Time per request: 596.104 [ms] (mean)
Time per request: 596.104 [ms] (mean, across all concurrent requests)
Transfer rate: 25.16 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 61 61 0.0 61 61
Processing: 532 532 0.0 532 532
Waiting: 359 359 0.0 359 359
Total: 593 593 0.0 593 593

Note: you need to provide a page name (at least / like in the above example) because
targeting only a host will give an incorrectly formatted URL error.

The -c and -n parameters define the number of simultaneous threads, and the total number of requests to
execute. The most interesting data in the result is the last line: the average total connection time (second
number from the left). In the example above, there is only one connection, so the connection time is not very
accurate. To have a better view of the actual performance of a page, you need to average several requests and
launch them in parallel:

$ /usr/local/bin/apache2/bin/ab -c 10 -n 20 http://www.askeet.com/
...

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 59 88 19.9 89 130

symfony advent calendar

Load testing tools 150/202

http://www.symfony-project.com/downloads/ab.zip

Processing: 831 1431 510.9 1446 3030
Waiting: 632 1178 465.1 1212 2781
Total: 906 1519 508.4 1556 3089

Percentage of the requests served within a certain time (ms)
 50% 1556
 66% 1569
 75% 1761
 80% 1827
 90% 2285
 95% 3089
 98% 3089
 99% 3089
 100% 3089 (longest request)

You should always start by a ab -c 1 -n 1 to have an idea of the time taken by the test itself before
executing it on a larger number of requests. Then, increase the number of total requests (like ab -c 1 -n
30) until you have a reasonably low standard deviation. Only then will you have a significant average
connection time measure, and you will be ready for the actual load test. Add threads little by little (and don't
forget to increase the total number of requests accordingly, like ab -c 10 -n 300) and see the connection
time increase as your server load is being handled. When the average loading times pass beyond a few
seconds, it means that your server is outnumbered and can probably not support more concurrent threads. You
have determined the maximum charge of your service. This is called a stress test.

Note: Please be kind enough not to stress test any running website in the Internet but your
own. Doing stress test on a foreign site is considered as a denial-of-service attack. The askeet
website is no different, so once again, please do not stress test it.

The load tests will provide you with two important pieces of information: the average loading time of a
specific page, and the maximum capacity of your server. The first one is very useful to monitor performance
improvements.

Improve performances with the cache

There are a lot of ways to increase the performance of a given page, including code profiling, database request
optimization, addition of indexes, creation of an alternative light web server dedicated to the media of the
website, etc. Existing techniques are either cross-language or PHP-specific, and browsing the web or buying a
good book about it will teach you how to become a performance guru.

Symfony adds a certain overload to web requests, since the configuration and the framework classes are
loaded for each request, and because the MVC separation and the ORM abstraction result in more code to
execute. Although this overhead is relatively low (as compared to other frameworks or languages), symfony
also provides ways to balance the response time with caching. The result of an action, or even a full page, can
be written in a file on the hard disk of the web server, and this file is reused when a similar request is
requested again. This considerably boosts performance, since all the database accesses, decoration, and action
execution are bypassed completely. You will find more information about caching in symfony in the cache
chapter of the symfony book.

We will try to use HTML cache to speed up the delivery of the popular tags page. As it includes a complex
SQL query, it is a good candidate for caching. First, let's see how long it takes to load it with the current code:

symfony advent calendar

Improve performances with the cache 151/202

http://en.wikipedia.org/wiki/Denial-of-service_attack
http://www.askeet.com/
http://www.askeet.com/
http://www.symfony-project.com/content/book/page/cache.html
http://www.symfony-project.com/content/book/page/cache.html

$ ab -c 1 -n 30 http://askeet/popular_tags
...
Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 0 0.0 0 0
Processing: 147 148 2.4 148 154
Waiting: 138 139 2.3 139 145
Total: 147 148 2.4 148 154
...

Put the result of the action in the cache

Warning: The following will not work on symfony 0.6. Please jump to the next section until
this tutorial is updated.

The action executed to display the list of popular tags is tag/popular. To put the result of this action in
cache, all we have to do is to create a cache.yml file in the
askeet/apps/frontend/modules/tag/config/ directory with:

popular:
 activate: on
 type: slot

all:
 lifeTime: 600

This activates the slot type cache for this action. The result of the action (the view) will be stored in a file in
the cache/frontend/prod/template/askeet/popular_tags/slot.cache file, and this file
will be used instead of calling the action for the next 600 seconds (10 minutes) after it has been created. This
means that the popular tags page will be processed every ten minutes, and in between, the cache version will
be used in place.

The caching is done at the first request, so you just need to browse to:

http://askeet/popular_tags

...to create a cache version of the template. Now, all the calls to this page for the next 10 minutes should be
faster, and we will check that immediately by running the Apache benchmarking tool again:

$ ab -c 1 -n 30 http://askeet/popular_tags
...
Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 0 0.0 0 0
Processing: 137 138 2.0 138 144
Waiting: 128 129 2.0 129 135
Total: 137 138 2.0 138 144
...

We passed from an average of 148ms to 138ms, that's a 7% increase in performance. The cache system
improves the performance in a significant way.

symfony advent calendar

Improve performances with the cache 152/202

Note: The slot type doesn't bypass the decoration of the page (i.e. the insertion of the
template in the layout). We can not put the whole page in cache in this case because the
layout contains elements that depend on the context (the user name in the top bar for
instance). But for non-dynamic layouts, symfony also provides a page type which is even
more efficient.

Build a staging environment

By default, the cache system is deactivated in the development environment and activated in the production
environment. This is because cached pages, if not configured properly, can create new errors. A good practice
concerning the test of a web application including cached page is to build a new test environment, similar to
the production one, but with all the debug and trace tools available in the development environment. We often
call it the 'staging' environment. If an error occurs in the staging environment but not in the development
environment, then there are many chances that this error is caused by a problem with the cache.

When you develop a functionality, make sure that it works properly in the development environment first.
Then, change the cache parameters of the related actions to improve performance, and test it again in the
staging environment to see if the caching system doesn't create functional perturbation. If everything works
fine, you just need to execute load tests in the production environment to measure the improvement. If the
behaviour of the application is different than in the development environment, you need to review the way
you configured the cache. Unit tests can be of great help to make this procedure systematic.

In order to create the staging environment, you need to add a new front controller and to define the
environment's settings.

Copy the production front controller (askeet/web/index.php) into a
askeet/web/frontend_staging.php file, and change its definition to:

<?php

define('SF_ROOT_DIR', realpath(dirname(__FILE__).'/..'));
define('SF_APP', 'frontend');
define('SF_ENVIRONMENT', 'staging');
define('SF_DEBUG', false);

require_once(SF_ROOT_DIR.DIRECTORY_SEPARATOR.'apps'.DIRECTORY_SEPARATOR.SF_APP.DIRECTORY_SEPARATOR.'config'.DIRECTORY_SEPARATOR.'config.php');

sfContext::getInstance()->getController()->dispatch();

?>

Now, open the askeet/apps/frontend/config/settings.yml, and add the following lines:

staging:
 .settings:
 web_debug: on
 cache: on
 no_script_name: off

That's it, the staging environment, with web debug and cache activated, is ready to be used by requesting:

symfony advent calendar

Improve performances with the cache 153/202

http://www.php.net/define
http://www.php.net/realpath
http://www.php.net/dirname
http://www.php.net/define
http://www.php.net/define
http://www.php.net/define

http://askeet/frontend_staging.php/

Put a template fragment in the cache

As many of the askeet pages are made of dynamic elements (a question description, for instance, contains an
'interested?' link which might be turned into simple text if the user displaying it already clicked on it), there
are not many slot cache type candidates in our actions. But we can put chunks of templates in cache, like
for instance the list of tags for a specific question. This one is trickier than the popular tag cloud, because the
cache of this chunk has to be cleared every time a user adds a tag to this question. But don't worry, symfony
makes it easy to handle.

To measure the improvement, we need to know the current average loading time of the question/show
page.

$ ab -c 1 -n 30 http://askeet/question/what-can-i-offer-to-my-step-mother

First of all, the list of tags for a question has two versions: one for unregistered users (it is a tag cloud), and
the other for registered users (it is a list of tags with delete links for the tags entered by the user himself). We
can only put in cache the tag cloud for unregistered users (the other one is dynamic). It is located in the
tag/_question_tags template partial. Open it
(askeet/apps/frontend/modules/tag/templates/_question_tags.php) and enclose the
fragment that has to be cached in a special if(!cache()) statement:

...
<?php if ($sf_user->isAuthenticated()): ?>
...
<?php else: ?>

<?php if (!cache('question_tags', 3600)): ?>
<?php include_partial('tag/tag_cloud', array('tags' => QuestionTagPeer::getPopularTagsFor($question))) ?>
<?php cache_save() ?>

<?php endif ?>
<?php endif ?>

The if(!cache()) statement will check if a version of the fragment enclosed (called
fragment_question_tags.cache) already exists in the cache, with an age not older than one hour
(3600 seconds). If this is the case, the cache version is used, and the code between the if(!cache()) and
the endif is not executed. If not, then the code is executed and its result saved in a fragment file with
cache_save().

Let us see the performance improvement caused by the fragment cache:

$ ab -c 1 -n 30 http://askeet/question/what-can-i-offer-to-my-step-mother

Of course, the improvement is not as significant as with a slot type cache, but doing lots of little
optimizations like this one can bring an appreciable enhancement to your application.

Note: Even if originally called by the sidebar/question action, the cache fragment file
is located in
cache/frontend/prod/template/askeet/question/what-can-i-offer-to-my-step-mother/fragment_question_tags.cache.
This is because the code of a slot depends on the main action called.

symfony advent calendar

Improve performances with the cache 154/202

http://www.php.net/array

Clear selective parts of the cache

The tag list of a question can change within the lifetime of the fragment. Each time a user adds or removes a
tag to a question, the tag list may change. This means that the related action have to be able to clear the cache
for the fragment. This is made possible by the ->remove() method of the viewCacheManager object.

Just modify the add and remove actions of the tag module by adding at the end of each one:

// clear the question tag list fragment in cache
$this->getContext()->getViewCacheManager()->remove('@question?stripped_title='.$this->question->getStrippedTitle(), 'fragment_question_tags');

You can now check that the tag list fragment cache doesn't create incoherences in the pages displayed by
adding to or removing a tag from a question, and seeing the list of tag properly updated accordingly.

You can also enable cache in the development environment to see which parts of a page are in cache. Change
your settings.yml configuration:

dev:
 .settings:
 cache: on

And now, you can see when a page, fragment or slot is already in cache:

or when it is a fresh copy:

symfony advent calendar

Improve performances with the cache 155/202

See you Tomorrow

Symfony doesn't create a high overhead, and provides easy ways to accurately tune the performance of a web
application. The cache system is powerful and adaptive. Once again, if some parts of this tutorial still seem
somehow obscure to you, don't hesitate to refer to the cache chapter of the symfony book. It is very detailed
and contains lots of new examples.

Tomorrow, we will start to think about the management of the website activity. Protection against spam or
correction of erroneous entries are among the functionality required by a website as soon as it is open to
semi-anonymous publication. We could either create an askeet back-office for that, or give access to a new set
of options to users with a certain profile. Anyway, it will surely take less than an hour, since we will develop
it with symfony.

Make sure you keep aware of the latest askeet news by visiting the forum or looking at the askeet timeline, in
which you will find bug reports, version details, and wiki changes.

symfony advent calendar

See you Tomorrow 156/202

http://www.symfony-project.com/content/book/page/cache.html
http://www.askeet.com/
http://www.symfony-project.com/forum/index.php/f/8/
http://trac.askeet.com/trac/timeline

symfony advent calendar day twenty:
Administration and moderation

Previously on symfony

The askeet service should work as expected and without any bad surprises, thanks to our concern about
performance before the initial release. But there is a much bigger problem: being an application open to
contributions from anyone, it is subject to spam, excesses, or disturbing errors. Every service like askeet needs
a way to moderate the publications, and accessing the database by hand is surely a bad solution. Should we
add a backend application to askeet?

The advent calendar tutorials are supposed to talk about the development of a web application using agile
methods. However, until now, we talked a lot about coding and not that much about application development,
and the relations between the requirements of a client and the functionality implemented. The backend need
will be a good opportunity to illustrate what comes before coding in agile development.

The expected result: what the client says

Today's job will consist of a few new actions, new templates and new model method, and we already know
how to do that. The hardest part is probably to define what is needed, and where to put it. It is both a
functional and usability concern, and it's a good thing that developers focus on something else than code every
once in a while.

It will be the opportunity to illustrate one of the tasks of the eXtreme Programming (XP) methodology: the
writing of stories, and the work that developers have to do to transform stories into functionality. XP is one of
the best agile development approaches, and is usually applicable to web 2.0 projects like askeet.

Stories

In XP, a story is a brief description of the way an action of the user triggers a reaction of the application.
Stories are written by the client of the website (the one who eventually pays for it - the web is not all about
open source). Stories rarely exceed one or two sentences. They are regrouped in themes.

The stories are generally less detailed and more elementary than use cases. If you are familiar with UML, you
might find the stories to not be precise enough, but we will see shortly that it can be a great chance.

Stories focus on the result of the action, not the implementation details. Of course, the client may have
preferences concerning the interface, and in this case the story has to contain the demands and
recommendations about the look and feel of the human computer interaction.

Stories have to be small enough to be evaluated easily by developers in terms of development time. Usually, a
team of extreme programmers measure stories in units. The value of a unit is refined throughout the course of
a project, and can vary from half a day to a few days.

Now, let's have a look at how the client would define the requirements for the askeet backend.

symfony advent calendar

symfony advent calendar day twenty: Administration and moderation 157/202

http://www.extremeprogramming.org/what.html

Story #1: Profile management

Every user can ask to become a moderator. In a user's profile page, a link should be made available to ask for
this privilege. A person who asked to be moderator must not be able to ask it again until he/she receives an
answer.

The persons entitled to accept or refuse a moderator candidate are the administrators. They must be able to
browse the list of candidates, and have a button to grant or refuse the grade of moderator for each one of them.
Administrators need to have a link to the candidate's profile to see if their contributions are all right.

Granting moderator rights must be a reversible action: Administrators must be able to browse a list of
moderators, and for each, to delete the moderator credential.

Administrators can also grant administrator rights to other users. They have access to the list of
administrators.

Story #2: Report of problematic questions or answers

Every user must be able to report a problematic question or answer to a moderator. A simple 'report spam' link
at the bottom of every question or answer can be a good solution.

To avoid spam of reports, the report from a user about a specific question or answer can only be counted once.
It would be great if the user had a visual feedback about the fact that his/her report was taken into account.

Story #3: Handling of problematic questions or answers

Moderators have two more lists available: the list of problematic questions, and the list of problematic
answers. Each list is ordered according to the number of reports, in decreasing order. So the most reported
questions will appear on top of the reported question list.

Moderators have the ability to delete a question, to delete an answer, and to reset the number of reports about
either one. The deletion of a question causes the deletion of all the answers to this question.

Story #4: handling of problematic tags

Moderators have the ability to delete a tag for a question, whether the tag was given by them or not.

Moderators have access to a list of tags, ordered by inverse popularity, so that they can detect the problematic
tags - the ones that don't make sense. By linking to the list of questions tagged with this tag, the list gives the
ability to suppress the tags.

Story #4: Handling of problematic users

When a moderator deletes a user's contribution, it increments the number of problematic contributions posted
by this user.

symfony advent calendar

The expected result: what the client says 158/202

Administrators have a list of problematic users ordered by the number of problematic posts erased.
Administrators must be able to delete a user and all his/her contributions.

Is that all?

Yes, that's all that the client needs to define about the functionality required for the askeet site management. It
doesn't cover all cases as a functional specification would, it is not as accurate as a complete set of use case,
and it leaves a lot of open ends that may lead to unwanted results.

But the job of the agile developers, which starts now, is to detect the possible ambiguities and lack of data,
and to require the assistance of the client when it turns out that a story must be more precise. In a XP-style
development phase, the client is always available to answer the questions of the development team.

So the developers meet up in pairs, and each pair chooses a story to work on. They talk a bit about what the
story means, the unit test cases that would validate the functionality. They write the unit tests. Then, they
write the code to pass these tests. When it's done, they release the code that they added in the whole
application, and validate the integration by running all the unit tests written before. As it works, they take a
cup of coffee, and split up. Then they form a new pair with someone else and focus on a new story.

What if the final result doesn't meet up with the desires of the client? Well, it only represents a few units of
work (a few hours or days), so it is easy to forget it and try a new approach. At least, the client now knows
what he/she doesn't want, and that's a great step towards determinism. But most of the time, as the developers
are given the opportunity to talk directly with the client and read between the lines of he stories written, they
get to produce the functionality in an even better way than the client would expect. Plus, it's the developer
who knows about the AJAX possibilities and the way a web 2.0 can become successful. So giving them (us)
the initiative is a good chance to end up with a great application.

If you are interested in XP and the benefits of agile development, have a look at the eXtreme Programming
website or read Extreme Programming Explained: Embrace Change by Kent Beck.

Backend vs. enhanced frontend

The feedback of the developer on the client's requirements is often crucial for the quality of the application.
Let us see what the developer, who knows how the application is built and how powerful symfony is, could
say to the client.

The idea to add a backend application to askeet is not that good, and for several reasons.

First, a moderator using the backend might need a lot of the features already available in the frontend
(including the list of latest questions, the login module, etc.). So there is a risk that the backend application
repeats part of the frontend. As we don't like to repeat ourselves, that would imply a lot of cross-application
refactoring, and this is much too long for the hour dedicated to it. Second, a new application would probably
mean a new design to the site, with a custom layout and stylesheets. This is what takes the most time in
application development. Last, to create the backend application in one hour, we would probably have to use
the CRUD generator a lot, resulting in many unnecessary actions and long-to-adapt templates.

symfony advent calendar

The expected result: what the client says 159/202

http://www.extremeprogramming.org/
http://www.extremeprogramming.org/

In the near future (it is planned for version 0.6), symfony will provide a full-featured back-office generator.
All the functionality commonly needed to manage a website activity will be handled easily, almost without a
line of code. This brilliant addition would have changed our mind about the way to build the askeet backend,
but considering the current state of the framework, the best solution for the management features is to add
them to the frontend application.

The base of the askeet frontend is a set of lists, and detail pages for questions and users in which certain
actions are available. This is exactly the skeleton needed to build up site management functionality on.

Although it would be helpful to show how a project can contain more than one application, the client,
impressed by this demonstration, goes for an integration of the site management features in the frontend
application.

Note: If you are still curious about the way to have more than one application running in a
symfony project, have a look at the My first project tutorial, which describes it in detail.

The functionality: what the developers understand

After the developers meet up and talk with the client about the stories, they deduce the modifications to be
done to the askeet application. The developer transforms stories to tasks. Tasks are usually smaller than
stories, because implementing a story takes more than a day or two, while a task can normally be developed
within one or two time units.

The model has to be modified to allow efficient requests:

new table ReportQuestion to be created, with question_id, user_id and
created_at columns

♦

new table ReportAnswer to be created, with question_id, user_id and
created_at columns

♦

new column reports to be added to the Question and Answer tables♦
new columns is_administrator, is_moderator and deletions to be added to the
User table

♦

1.

On every page, the sidebar has to provide access to new lists according to the credentials of the user:

All users: popular questions, latest questions, latest answers♦
Moderators: reported questions, reported answers, unpopular tags♦
Administrators: administrators, moderators, moderator candidates, problematic users♦

2.

The question detail page (question/show) has to provide access to new actions according to the
credentials of the user:

Subscriber: report question, report answer♦
Moderators: delete question and answers, delete answer, reset reports for question, reset
reports for answer, delete tag

♦

The question detail has to give additional information according to the credentials of the user:

Subscriber: if the question has already been reported by the subscriber♦
Moderator: the number of reports about the question and answers♦

3.

symfony advent calendar

Backend vs. enhanced frontend 160/202

http://www.symfony-project.com/tutorial/my_first_project.html

The user profile page (user/show) has to provide access to new actions according to the credentials
of the user:

Subscriber on his own page: come forward as a moderator candidate♦
Administrators: delete the user and all his/her contributions, grant moderator credentials,
refuse moderator credentials, delete moderator credentials, grant administrator credentials

♦

The user profile page has to give additional information according to the credentials of the user:

All users: credentials of the user, credentials being applied for♦
Administrators: number of erased posts♦

4.

New lists with restricted access must be created:

Restricted to moderators:
question/reports: list of reported questions, in decreasing order of number of
reports; For each, link to the question detail.

◊

answer/reports: list of reported answers, in decreasing order of number of
reports; For each, link to the question detail.

◊

tag/unpopular: list of tags, in increasing popularity order; For each, link to the
list of questions tagged with this tag

◊

♦

Restricted to administrators:
user/administrators: list of administrators, by alphabetical order; For each,
link to the user profile

◊

user/moderators: list of moderators, by alphabetical order; For each, link to the
user profile

◊

user/candidates: list of moderator candidates, by alphabetical order; For each,
link to the user profile

◊

user/problematic: list of problematic users, in decreasing order of deleted
contributions; For each, link to the user profile

◊

♦

5.

Two new credentials must be created: Administrator and Moderator.6.
At least one administrator has to be setup by hand in the database for the application to work.7.

Implementation

Once the task list is written, the way to implement the backend features on askeet with symfony is just a
matter of work. Applying the XP methodology on this task list, including the writing of unit tests, would take
at least a good day of work. For the needs of the advent calendar tutorial, we will do it a little faster, and we
will just focus here on the new techniques not described previously, or on the ones that should help you to
review classical symfony techniques.

New tables

For the question and answer reports, we add two new tables to the askeet database:

<table name="ask_report_question" phpName="ReportQuestion">
<column name="question_id" type="integer" primaryKey="true" />
<foreign-key foreignTable="ask_question">

<reference local="question_id" foreign="id" />
</foreign-key>

symfony advent calendar

The functionality: what the developers understand 161/202

<column name="user_id" type="integer" primaryKey="true" />
<foreign-key foreignTable="ask_user">

<reference local="user_id" foreign="id" />
</foreign-key>
<column name="created_at" type="timestamp" />

</table>

<table name="ask_report_answer" phpName="ReportAnswer">
<column name="answer_id" type="integer" primaryKey="true" />
<foreign-key foreignTable="ask_answer">

<reference local="answer_id" foreign="id" />
</foreign-key>
<column name="user_id" type="integer" primaryKey="true" />
<foreign-key foreignTable="ask_user">

<reference local="user_id" foreign="id" />
</foreign-key>
<column name="created_at" type="timestamp" />

</table>

The combination of the question_id/answer_id and the user id is enough to create a unique
primary key, so we don't need to add an auto-increment id for these tables.

We also add a new reports column to the Question and Answer table. In order to synchronize the
number of records in the ReportQuestion and the number of reports in the Question table, we
override the save() method of the ReportQuestion object to add a transaction, as we did during day 4:

public function save($con = null)
{

$con = sfContext::getInstance()->getDatabaseConnection('propel');
 try

{
$con->begin();

$ret = parent::save();

// update spam_count in answer table
$answer = $this->getAnswer();
$answer->setReports($answer->getReports() + 1);
$answer->save();

$con->commit();

return $ret;
}

 catch (Exception $e)
{

$con->rollback();
 throw $e;

}
}

Same for the ReportAnswer table.

symfony advent calendar

Implementation 162/202

Cascade deletion

When a question is deleted, all the answers to this questions must also be deleted, as well as all the interests
about the question, the tags added to the question and the relevancy ratings about all the answers. We need a
mechanism of cascade deletion to take care of all that for us.

During day two, we had the idea of using the InnoDB engine for the askeet database. This facilitates the
cascade deletions. But the Propel layer can manage to do the cascade deletions even on a non-InnoDB enabled
database, provided that we indicate in the schema that cascade deletion has to be taken care of. This has to be
done when declaring a foreign key: add a onDelete="cascade" attribute to the <foreign-key> tag in
a table definition. For instance, for the Answer table:

...
<table name="ask_answer" phpName="Answer">

<column name="id" type="integer" required="true" primaryKey="true" autoIncrement="true" />
<column name="question_id" type="integer" />
<foreign-key foreignTable="ask_question" onDelete="cascade">
<reference local="question_id" foreign="id"/>

</foreign-key>
<column name="user_id" type="integer" />
<foreign-key foreignTable="ask_user">

<reference local="user_id" foreign="id"/>
</foreign-key>
<column name="body" type="longvarchar" />
<column name="html_body" type="longvarchar" />
<column name="relevancy_up" type="integer" default="0" />
<column name="relevancy_down" type="integer" default="0" />
<column name="reports" type="integer" default="0" />
<column name="created_at" type="timestamp" />

</table>
...

Once the model is rebuilt, cascade deletion is enabled for the relations bearing the onDelete attribute.
When you delete a record in the Question table:

if the database uses the InnoDB engine, the related answers will be deleted automatically by the
database itself

•

else, the Propel layer will automatically get the related answers, delete them, then delete the question.•

All relations may not involve a cascade deletion. Deleting a user, for instance, should delete his/her interests
and ratings for answer relevancies, but not his/her contributions (questions and answers). These contributions
should be associated to the anonymous user after deletion.

So the onDelete attribute has to be set to cascade for the following relations:

Answer/QuestionId•
Interest/QuestionId•
Relevancy/QuestionId•
QuestionTag/QuestionId•
ReportQuestion/QuestionId•
ReportAnswer/AnswerId•

symfony advent calendar

Implementation 163/202

Add links in the sidebar for users with credentials

We create a new moderator module to handle all the moderator actions, and an administrator one to
handle the administration actions.

During day seven, we used the component slot technique to store the code of the sidebar in the sidebar
module. The links to the new lists will appear there, but they need to be conditionned to a credential. This is
simply done by using the $sf_user->hasCredential() method, as seen during day six:

// in askeet/apps/frontend/modules/sidebar/templates/_default.php and _question.php:
...
<?php include_partial('sidebar/moderation') ?>

<?php include_partial('sidebar/administration') ?>

// in askeet/apps/frontend/modules/sidebar/templates/_moderation.php:
<?php if ($sf_user->hasCredential('moderator')): ?>
 <h2>moderation</h2>

 <?php echo link_to('reported questions', 'moderator/reportedQuestions') ?> (<?php echo QuestionPeer::getReportCount() ?>)
 <?php echo link_to('reported answers', 'moderator/reportedAnswers') ?> (<?php echo AnswerPeer::getReportCount() ?>)
 <?php echo link_to('unpopular tags', 'moderator/unpopularTags') ?>

<?php endif ?>

// in askeet/apps/frontend/modules/sidebar/templates/_administration.php:
...
<?php if ($sf_user->hasCredential('administrator')): ?>
 <h2>administration</h2>

 <?php echo link_to('moderator candidates', 'administrator/moderatorCandidates') ?> (<?php echo UserPeer::getModeratorCandidatesCount() ?>)
 <?php echo link_to('moderator list', 'administrator/moderators') ?>
 <?php echo link_to('administrator list', 'administrator/administrators') ?>
 <?php echo link_to('problematic users', 'administrator/problematicUsers') ?> (<?php echo UserPeer::getProblematicUsersCount() ?>)

<?php endif ?>

symfony advent calendar

Implementation 164/202

http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/echo

The class methods QuestionPeer::getReportCount(), AnswerPeer::getReportCount(),
UserPeer::getModeratorCandidatesCount() and
UserPeer::getProblematicUsersCount() are to be added to the model. They are all based on the
same principle:

public static function getReportCount()
{

$c = new Criteria();
$c->add(self::REPORTS, 0, Criteria::GREATER_THAN);
$c = self::addPermanentTagToCriteria($c);

return self::doCount($c);
}

AJAX report

We will provide a '[report to moderator]' link to report a question in all the places a question is displayed (in
the question lists, in a question detail page). It would be nice if this link was an AJAX one, as in the day eight
tutorial. So we add a new helper to the QuestionHelper.php file in the
askeet/apps/frontend/lib/helper/ directory:

function link_to_report_question($question, $user)
{
 use_helper('Javascript');

$text = '[report to moderator]';
if ($user->isAuthenticated())
{
$has_already_reported_question = ReportQuestionPeer::retrieveByPk($question->getId(), $user->getSubscriberId());

symfony advent calendar

Implementation 165/202

http://www.php.net/static

if ($has_already_reported_question)
{
// already reported for this user
return '[reported]';

}
else
{
return link_to_remote($text, array(

'url' => '@user_report_question?id='.$question->getId(),
'update' => array('success' => 'report_question_'.$question->getId()),
'loading' => "Element.show('indicator')",
'complete' => "Element.hide('indicator');".visual_effect('highlight', 'report_question_'.$question->getId()),

));
}

}
else
{

return link_to_login($text);
}

}

Now, the templates where the link has to appear (question/templates/showSuccess.php,
question/templates/_list.php) can use this helper:

<div class="options" id="report_question_<?php echo $question->getId() ?>">
<?php echo link_to_report_question($question, $sf_user) ?>

</div>

The @user_report_question rule has to be written in the routing.yml as leading to a
user/reportQuestion action:

public function executeReportQuestion()
{

$this->question = QuestionPeer::retrieveByPk($this->getRequestParameter('id'));
$this->forward404Unless($this->question);

$spam = new ReportQuestion();
$spam->setQuestionId($this->question->getId());
$spam->setUserId($this->getUser()->getSubscriberId());
$spam->save();

}

And the result of this action, the user/templates/reportQuestionSuccess.php template, is
simply:

<?php use_helper('Question') ?>
<?php echo link_to_report_question($question, $sf_user) ?>

symfony advent calendar

Implementation 166/202

http://www.php.net/array
http://www.php.net/array
http://www.php.net/echo
http://www.php.net/echo

The same goes for the reported answers.

New action links for users with credentials

In the question_body div tag of the
askeet/apps/frontend/modules/question/templates/showSuccess.php, we add the
question management actions for moderators only, so to be compatible with the AJAX report, we put them in
a fragment:

...
<div class="options" id="report_question_<?php echo $question->getId() ?>">

<?php echo link_to_report_question($question, $sf_user) ?>
<?php include_partial('moderator/question_options', array('question' => $question)) ?>

</div>

The askeet/apps/frontend/modules/moderator/templates/_question_options.php
fragment contains:

<?php if ($sf_user->hasCredential('moderator')): ?>
 <?php if ($question->getReports()): ?>
 [<?php echo $question->getReports() ?> reports]
 <?php echo link_to('[reset reports]', 'moderator/resetQuestionReports?stripped_title='.$question->getStrippedTitle()) ?>
 <?php endif ?>
 <?php echo link_to('[delete question]', 'moderator/deleteQuestion?stripped_title='.$question->getStrippedTitle()) ?>
<?php endif ?>
...

The same options are added in the
askeet/apps/frontend/modules/answer/templates/_answer.php, with a link to a
moderator/templates/_answer_options.php fragment.

symfony advent calendar

Implementation 167/202

http://www.php.net/echo
http://www.php.net/array

The same kind of adaptation goes for the administrator action links in the user profile page.

Note: One of the good practices about links to actions is to implement them as a normal link
(doing a 'GET' request) when the action doesn't modify the model, and as a button (doing a
'POST') request when the action alters the data. This is to avoid that automatic web crawlers,
like search engine robots, click on a link that can modify the database. The AJAX links being
inmplemented in javascript, they can'y be clicked by robots. The 'reset' and 'report' links that
we just added, however, could be clicked by a robot. Fortunately, they are not displayed
unless the user has moderator access, so there is no risk that they are clicked unintentionnally.

We could add an extra protection on these links by declaring them as 'POST' links, as
described in the link chapter of the symfony book:

[php]
getId(), 'post=true') ?>

Access restriction

When a user with specific rights logs in, his sfUser object must be given the appropriate credential. This is
done in the signIn method of the myUser class in
askeet/apps/frontend/lib/myUser.class.php, that we created during day six:

public function signIn($user)
{

$this->setAttribute('subscriber_id', $user->getId(), 'subscriber');
$this->setAuthenticated(true);

$this->addCredential('subscriber');

if ($user->getIsModerator())
{
$this->addCredential('moderator');

}

if ($user->getIsAdministrator())
{
$this->addCredential('administrator');

}

$this->setAttribute('nickname', $user->getNickname(), 'subscriber');
}

Of course, all the moderator actions have to be restricted to moderators with appropriate settings in the
askeet/apps/frontend/modules/moderator/config/security.yml:

all:
 is_secure: on
 credentials: moderator

The same kind of restriction is to be applied for administrator actions.

symfony advent calendar

Implementation 168/202

http://www.symfony-project.com/content/book/page/templating_link_helpers.html

New moderator and administrator actions

There is nothing new in the actions to be added to the moderator and administrator actions. We will
just give the list here so that you know about them:

// administrator actions
executeProblematicUsers() -> usersSuccess.php
executeModerators() -> usersSuccess.php
executeAdministrators() -> usersSuccess.php
executeModeratorCandidates() -> usersSuccess.php

executePromoteModerator() -> request referrer
executeRemoveModerator() -> request referrer
executePromoteAdministrator() -> request referrer
executeRemoveAdministrator() -> request referrer

// moderator actions
executeUnpopularTags() -> unpopularTagsSuccess.php
executeReportedQuestions() -> reportedQuestions.php
executeReportedAnswers() -> reportedAnswers.php

executeDeleteTag() -> request referrer
executeDeleteQuestion() -> @homepage
executeDeleteAnswer() -> request referrer

Note: To specify a custom template for an action, you can add a view.yml config file to the
module. For instance, to have half of the administrator actions use the
usersSuccess.php template, you can create the following
askeet/apps/frontend/modules/administrator/config/view.yml file:

moderatorsSuccess:
 template: users

administratorsSuccess:
 template: users

moderatorCandidatesSuccess:
 template: users

problematicUsersSuccess:
 template: users

Log deletions

When a moderator deletes a question, we want to keep a trace of the deletion in a log file, in a warning
message. To allow the logging of warning messages in the production environment, we need to modify the
logging.yml configuration file:

prod:
 level: warning

Then, in all the delete actions, add the code to log the deletion, as in this moderator/deleteQuestion
action:

symfony advent calendar

Implementation 169/202

public function executeDeleteQuestion()
{

$question = QuestionPeer::getQuestionFromTitle($this->getRequestParameter('stripped_title'));
$this->forward404Unless($question);

$con = sfContext::getInstance()->getDatabaseConnection('propel');
 try

{
$con->begin();

$user = $question->getUser();
$user->setDeletions($user->getDeletions() + 1);
$user->save();

$question->delete();

$con->commit();

// log the deletion
$log = 'moderator "%s" deleted question "%s"';
$log = sprintf($log, $this->getUser()->getNickname(), $question->getTitle());
$this->getContext()->getLogger()->warning($log);

}
 catch (PropelException $e)

{
$con->rollback();

 throw $e;
}

$this->redirect('@homepage');
}

If you want to know more about logging, you can have a look at the debug chapter of the symfony book.

We changed the try/catch statement to react only to PropelExceptions instead of all Exceptions.
This is because we don't want the transaction to fail only because there is a problem in the logging of the
deletion.

Note: In the example above, we use the object $question even after it has been deleted.
This is because the call to the ->delete() method marks a record or a list of records for
deletion, and the actual deletion is only processed by Propel once the action is finished.

See you Tomorrow

As we took some time to think about the way to implement the backend features, and because there are quite a
lot of them, today's tutorial probably lasted two hours rather than only one. But there is not many new things
here, so the implementation should be a review of symfony techniques. You can have a good view of the total
list of changes by browsing to the askeet timeline.

Tomorrow is the day of the mysterious feature. Numerous suggestions were sent to the forum, or even in the
beta askeet site itself. You will see which one we decided to implement, and how symfony can be of great
help to it.

symfony advent calendar

See you Tomorrow 170/202

http://www.php.net/sprintf
http://www.symfony-project.com/content/book/page/debug.html
http://trac.askeet.com/trac/changeset/55

Feel free to go to the forum if you have any problem with today's source, which, by the way, can still be
downloaded from the SVN repository or browsed in the trac.

symfony advent calendar

See you Tomorrow 171/202

http://www.symfony-project.com/forum/index.php/f/8/
http://svn.askeet.com/tags/release_day_14/
http://trac.askeet.com/trac/browser/tags/release_day_20

symfony advent calendar day twenty-one: Search
engine

Previously on symfony

With AJAX interactions, web services, RSS feed, a hat ful of site management features, and a growing
number or users, askeet has almost all that a web 2.0 application could ask for. The symfony community
debated about what could be added on top of that, in order to make askeet a real killer application.

Some of the suggestions included features that were already planned for initially. Others concerned small
additions that will take only a couple minutes to implement, and that will probably be added shortly after the
1.0 release. Askeet aims to be a living open-source application, and you can start raising tickets or proposing
evolutions in the askeet trac system. And you can also contribute patches and adapt or extend the application
as you wish. But please wait a few more days, for the advent calendar has some more surprises for you before
Christmas.

How to build a search engine?

The most popular suggestion about the 21st day addition proved to be a search engine.

If the Zsearch extension (a PHP implementation of the Lucene search engine from Apache) had already been
released by Zend, this would have been a piece of cake to implement. Unfortunately, Zend seems to take
longer than expected to launch their PHP framework, so we need to find another solution.

Integrating a foreign library (like, for instance, mnoGoSearch) would probably take more than one hour, and
lots of custom adaptations would be necessary to obtain a good result for the askeet specific content. Plus,
foreign search libraries are often platform or database dependant, and not all of them are open-source, and
that's something we don't want for askeet.

The MySQL database offers a full-text indexation and search for text content, but it is restricted to MyISAM
tables. Once again, basing our search engine on a database-specific component would limit the possible uses
of the askeet application, and we want to do everything to preserve the large compatibility it has so far.

The only alternative left is to develop a full-text PHP search engine by ourselves. And we have less than one
hour, so we'd better get started.

Word index

The first step is to build a search index. The index can be seen as a table indexing all occurrences of a
particular word. For example, if question #34 has the following characteristics:

Title: What is the best Zodiac sign for my child?•
Body: My husband doesn't care about Zodiac signs for our next child, but we already have a Cancer
girl and an Aries boy, and they get along with each other like hell. My mother-in-law didn't express

•

symfony advent calendar

symfony advent calendar day twenty-one: Search engine 172/202

http://www.askeet.com
http://trac.askeet.com/
http://lucene.apache.org/java/docs/
http://www.apache.org/
http://www.zend.com/
http://phparch.com/webcasts/recordings/dec0205_zend.php
http://www.mnogosearch.org/
http://dev.mysql.com/doc/refman/5.0/en/fulltext-search.html

any preference, so I am completely free to choose the Zodiac sign of my next baby. What do you
think?
Tags: zodiac, real life, family, children, sign, astrology, signs•

An index has to be created to list the words of this question, so that a search engine can find it.

Index table

The index should look like:

id word count
34 sign 4
34 zodiac 4
34 child 2
34 hell 1
34
A new SearchIndex table is added to the askeet schema.xml before rebuilding the model:

<table name="ask_search_index" phpName="SearchIndex">
<column name="question_id" type="integer" />
<foreign-key foreignTable="ask_question" onDelete="cascade">
<reference local="question_id" foreign="id"/>

</foreign-key>
<column name="word" type="varchar" size="255" />
<index name="word_index">

<index-column name="word" />
</index>
<column name="weight" type="integer" />

</table>

The onDelete attribute ensures that the deletion of a question will lead to the deletion of all the records in
the SearchIndex table related to this question, as explained yesterday.

Splitting phrases into words

The input content that will be used to build the index is a set of sentences (question title and body) and tags.
What is eventually needed is a list of words. This means that we need to split the sentences into words,
ignoring all punctuation, numbers, and putting all words to lowercase. The str_word_count() PHP
function will do the trick:

// split into words
$words = str_word_count(strtolower($phrase), 1);
...

Stop words

Some words, like "a," "of," "the," "I,", "it", "you," and "and", have to be ignored when indexing some text
content. This is because they have no distinctive value, they appear in almost every text content, they slow

symfony advent calendar

Word index 173/202

http://www.php.net/str_word_count
http://www.php.net/strtolower

down a text search and make it return a lot of poorly interesting results that have nothing to do with a user's
query. They are known as stop words. The stop words are specific to a given language.

For the askeet search engine, we will use a custom list of stop words. Add the following method to the
askeet/lib/myTools.class.php class:

public static function removeStopWordsFromArray($words)
{

$stop_words = array(
'i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'your', 'yours',
'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers',
'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves',
'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are',
'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does',
'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until',
'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into',
'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down',
'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here',
'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more',
'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so',
'than', 'too', 'very',

);

return array_diff($words, $stop_words);
}

Stemming

The first thing that you should notice in the example question given above is that words having the same
radical should be seen as a single one. 'Children' should increase the weight of 'child', as should 'sign' do for
'signs'. So before indexing words, they have to be reduced to their greatest common divisor, and in linguistics
vocabulary, this is called a stem, or "the base part of the word including derivational affixes but not
inflectional morphemes, i. e. the part of the word that remains unchanged through inflection".

There are lots of rules to transform a word into its stem, and these rules are all language-dependant. One of the
best stemming techniques for the English language so far is called the Porter Stemming Algorithm and, as we
are very lucky, it has been ported to PHP5 in an open-source script available from tartarus.org.

The PorterStemmer class provides a ::stem($word) method that is perfect for our needs. So we can
write a method, still in myTools.class.php, that turns a phrase into an array of stem words:

 [php]
 public static function stemPhrase($phrase)
 {
 // split into words
 $words = str_word_count(strtolower($phrase), 1);

 // ignore stop words
 $words = myTools::removeStopWordsFromArray($words);

 // stem words
 $stemmed_words = array();
 foreach ($words as $word)

symfony advent calendar

Word index 174/202

http://en.wikipedia.org/wiki/Stop_words
http://www.php.net/static
http://www.php.net/array
http://www.php.net/array_diff
http://en.wikipedia.org/wiki/Stem_%28linguistics%29
http://www.tartarus.org/~martin/PorterStemmer/
http://www.tartarus.org/~martin/PorterStemmer/php.txt

 {
 // ignore 1 and 2 letter words
 if (strlen($word) <= 2)
 {
 continue;
 }

 $stemmed_words[] = PorterStemmer::stem($word, true);
 }

 return $stemmed_words;
 }

Of course, you have to put the PorterStemmer.class.php in the same askeet/lib/ directory for
this to work.

Giving weight to words

The search results have to appear in order of pertinence. The questions that are more tightly related to the
words entered by the user have to appear first. But how can we translate this idea of pertinence into an
algorithm? Let's write a few basic principles:

If a searched word appears in the title of a question, this question should appear higher in a search
result than another one where the word appears only in the body.

•

If a searched word appears twice in the content of a question, the search result should show this
question before others where the word appears only once.

•

That's why we need to give weight to words according to the part of the question they come from. As the
weight factors have to be easily accessible, to make them vary if we want to fine tune our search engine
algorithm, we will put them in the application configuration file
(askeet/apps/frontend/config/app.yml):

all:
 ...

 search:
 body_weight: 1
 title_weight: 2
 tag_weight: 3

In order to apply the weight to a word, we simply repeat the content of a string as many times as the weight
factor of its origin:

...
// question body
$raw_text = str_repeat(' '.strip_tags($question->getHtmlBody()), sfConfig::get('app_search_body_weight'));

// question title
$raw_text .= str_repeat(' '.$question->getTitle(), sfConfig::get('app_search_title_weight'));
...

symfony advent calendar

Word index 175/202

http://www.php.net/str_repeat
http://www.php.net/strip_tags
http://www.php.net/str_repeat

The basic weight of the words will be given by their number of occurrences in the text. The
array_count_values() PHP function will help us for that:

...
// phrase stemming
$stemmed_words = myTools::stemPhrase($raw_text);

// unique words with weight
$words = array_count_values($stemmed_words);

Updating the index

The index has to be updated each time a question, tag or answer is added. The MVC architecture makes it
easy to do, and you have already seen how to override a save() method in a class of the Model with a
transaction, for instance during day four. So the following should not surprise you. Open the
askeet/lib/model/Question.php file and add in:

public function save($con = null)
{

$con = sfContext::getInstance()->getDatabaseConnection('propel');
 try

{
$con->begin();

$ret = parent::save($con);
$this->updateSearchIndex();

$con->commit();

return $ret;
}

 catch (Exception $e)
{

$con->rollback();
 throw $e;

}
}

public function updateSearchIndex()
{

// delete existing SearchIndex entries about the current question
$c = new Criteria();
$c->add(SearchIndexPeer::QUESTION_ID, $this->getId());

 SearchIndexPeer::doDelete($c);

// create a new entry for each of the words of the question
foreach ($this->getWords() as $word => $weight)
{

$index = new SearchIndex();
$index->setQuestionId($this->getId());
$index->setWord($word);
$index->setWeight($weight);
$index->save();

}
}

symfony advent calendar

Word index 176/202

http://www.php.net/array_count_values

public function getWords()
{

// body
$raw_text = str_repeat(' '.strip_tags($this->getHtmlBody()), sfConfig::get('app_search_body_weight'));

// title
$raw_text .= str_repeat(' '.$this->getTitle(), sfConfig::get('app_search_title_weight'));

// title and body stemming
$stemmed_words = myTools::stemPhrase($raw_text);

// unique words with weight
$words = array_count_values($stemmed_words);

// add tags
$max = 0;
foreach ($this->getPopularTags(20) as $tag => $count)
{

if (!$max)
{
$max = $count;

}

$stemmed_tag = PorterStemmer::stem($tag);

if (!isset($words[$stemmed_tag]))
{
$words[$stemmed_tag] = 0;

}
$words[$stemmed_tag] += ceil(($count / $max) * sfConfig::get('app_search_tag_weight'));

}

return $words;
}

We also have to update the question index each time a tag is added to it, so override the save() method of
the Tag model object as well:

public function save($con = null)
{

$con = sfContext::getInstance()->getDatabaseConnection('propel');
 try

{
$con->begin();

$ret = parent::save($con);
$this->getQuestion()->updateSearchIndex();

$con->commit();

return $ret;
}

 catch (Exception $e)
{

$con->rollback();
 throw $e;

}
}

symfony advent calendar

Word index 177/202

http://www.php.net/str_repeat
http://www.php.net/strip_tags
http://www.php.net/str_repeat
http://www.php.net/array_count_values
http://www.php.net/isset
http://www.php.net/ceil

Test the index builder

The index is ready to be built. Initialize it by populating the database again:

$ php batch/load_data.php

You can inspect the SearchIndex table to check if the indexing went all well:

id word weight
10 blog 6
9 offer 4
8 girl 3
8 rel 3
8 activ 3
10 activ 3
9 present 3
9 reallif 3
11 test 3
12 test 3
13 test 3
8 shall 3
8 tonight 2
8 girlfriend 2
..

The search function

AND or OR?

We want the search function to manage both 'AND' and 'OR' searches. For instance, if a user enters 'family
zodiac', he (she?) must be given the choice to look only for the questions where both the two terms appear
(that's an 'AND'), or for all the questions where at least one of the term appears (that's an 'OR'). The trouble is
that these two options lead to different queries:

// OR query
SELECT DISTINCT question_id, COUNT(*) AS nb, SUM(weight) AS total_weight
FROM ask_search_index
WHERE (word = "family" OR word = "zodiac")
GROUP BY question_id
ORDER BY nb DESC, total_weight DESC

// AND query
SELECT DISTINCT question_id, COUNT(*) AS nb, SUM(weight) AS total_weight
FROM ask_search_index
WHERE (word = "family" OR word = "zodiac")
GROUP BY question_id
HAVING nb = 2

symfony advent calendar

Word index 178/202

ORDER BY nb DESC, total_weight DESC

Thanks to the HAVING keyword (explained, for instance, at w3schools), the AND SQL query is only one line
longer than the OR one. As the GROUP BY is on the id column, and because there is only one index
occurrence for a given word in a question, if a question_id is returned twice, it is because the question
matches both the 'family' and 'zodiac' term. Neat, isn't it?

The search method

For the search to work, we need to apply the same treatment to the search phrase as to the content, so that the
words entered by the user are reduced to the same kind of stem that lies in the index. Since it returns a set of
questions without any foreign constraint, we decide to implement it as a method of the QuestionPeer
object.

The search results need to be paginated. As we use a complex request, the sfPropelPager object cannot
be employed here, so we will do a pagination by hand, using an offset.

There is one more thing to remember: askeet is made to work with universes (that was the subject of the
eighteenth day tutorial). This means that a search function must only return the questions tagged with the
current app_permanent_tag if the user is browsing askeet in a universe.

All these conditions make the SQL query slightly more difficult to read, but not much different from the ones
described above:

public static function search($phrase, $exact = false, $offset = 0, $max = 10)
{

$words = array_values(myTools::stemPhrase($phrase));
$nb_words = count($words);

if (!$words)
{
return array();

}

$con = sfContext::getInstance()->getDatabaseConnection('propel');

// define the base query
$query = '

 SELECT DISTINCT '.SearchIndexPeer::QUESTION_ID.', COUNT(*) AS nb, SUM('.SearchIndexPeer::WEIGHT.') AS total_weight
 FROM '.SearchIndexPeer::TABLE_NAME;

if (sfConfig::get('app_permanent_tag'))
{
$query .= '

 WHERE ';
}
else
{

$query .= '
 LEFT JOIN '.QuestionTagPeer::TABLE_NAME.' ON '.QuestionTagPeer::QUESTION_ID.' = '.SearchIndexPeer::QUESTION_ID.'
 WHERE '.QuestionTagPeer::NORMALIZED_TAG.' = ? AND ';
}

symfony advent calendar

The search function 179/202

http://www.w3schools.com/sql/sql_groupby.asp
http://www.php.net/static
http://www.php.net/array_values
http://www.php.net/count
http://www.php.net/array

$query .= '
 ('.implode(' OR ', array_fill(0, $nb_words, SearchIndexPeer::WORD.' = ?')).')
 GROUP BY '.SearchIndexPeer::QUESTION_ID;

// AND query?
if ($exact)
{
$query .= '

 HAVING nb = '.$nb_words;
}

$query .= '
 ORDER BY nb DESC, total_weight DESC';

// prepare the statement
$stmt = $con->prepareStatement($query);
$stmt->setOffset($offset);
$stmt->setLimit($max);
$placeholder_offset = 1;
if (sfConfig::get('app_permanent_tag'))
{
$stmt->setString(1, sfConfig::get('app_permanent_tag'));
$placeholder_offset = 2;

}
for ($i = 0; $i < $nb_words; $i++)
{

$stmt->setString($i + $placeholder_offset, $words[$i]);
}
$rs = $stmt->executeQuery(ResultSet::FETCHMODE_NUM);

// Manage the results
$questions = array();
while ($rs->next())
{
$questions[] = self::retrieveByPK($rs->getInt(1));

}

return $questions;
}

The method returns a list of Question objects, ordered by pertinence.

The search form

The search form has to be always available, so we choose to put it in the sidebar. As there are two distinct
sidebars, they should include the same partial:

// add to defaultSuccess.php and questionSuccess.php in askeet/apps/frontend/modules/sidebar/templates/
<h2>find it</h2>
<?php include_partial('question/search') ?>

// create the following askeet/apps/frontend/modules/question/templates/_search.php fragment
<?php echo form_tag('@search_question') ?>

<?php echo input_tag('search', htmlspecialchars($sf_params->get('search')), array('style' => 'width: 150px')) ?>
<?php echo submit_tag('search it', 'class=small') ?>
<?php echo checkbox_tag('search_all', 1, $sf_params->get('search_all')) ?> <label for="search_all" class="small">search with all words</label>

</form>

symfony advent calendar

The search function 180/202

http://www.php.net/implode
http://www.php.net/array_fill
http://www.php.net/array
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/htmlspecialchars
http://www.php.net/array
http://www.php.net/echo
http://www.php.net/echo

The @search_question rule has to be defined in the routing.yml:

search_question:
 url: /search/*
 param: { module: question, action: search }

Do you know what this question/search action does? Almost nothing, since most of the work is handled
by the QuestionPeer::search() method described above:

public function executeSearch ()
{

if ($this->getRequestParameter('search'))
{
$this->questions = QuestionPeer::search($this->getRequestParameter('search'), $this->getRequestParameter('search_all', false), ($this->getRequestParameter('page', 1) - 1) * sfConfig::get('app_search_results_max'), sfConfig::get('app_search_results_max'));

}
else
{

$this->redirect('@homepage');
}

}

The action has to translate a page request parameter into an offset for the ::search() method. The
app_search_results_max is the number of results per page, and as usual, it is an application parameter
defined in the app.yml file:

all:
 search:
 results_max: 10

Display the search result

The hardest part of the job is done, we just have to display the search result in a
askeet/apps/frontend/modules/question/templates/searchSuccess.php. As we
didn't implement a real pagination to keep the query light, the template has no information about the total
number of results. The pagination will just display a 'more results' link at the bottom of the result list if the
number of results equals the maximum of results per page:

symfony advent calendar

The search function 181/202

<?php use_helpers('Global') ?>

<h1>questions matching "<?php echo htmlspecialchars($sf_params->get('search')) ?>"</h1>

<?php foreach($questions as $question): ?>
<?php include_partial('question/question_block', array('question' => $question)) ?>

<?php endforeach ?>

<?php if ($sf_params->get('page') > 1 && !count($questions)): ?>
 <div>There is no more result for your search.</div>
<?php elseif (!count($questions)): ?>
 <div>Sorry, there is no question matching your search terms.</div>
<?php endif ?>

<?php if (count($questions) == sfConfig::get('app_search_results_max')): ?>
 <div class="right">

<?php echo link_to('more results »', '@search_question?search='.$sf_params->get('search').'&page='.($sf_params->get('page', 1) + 1)) ?>
 </div>
<?php endif ?>

Ah, yes, this is the final surprise. We refactored a little the question templates to create a
_question_block.php question block, as the code was reused in more than one place. Have a look at
this fragment in the source repository, there is nothing new in it. But it helps us to keep the code clean.

See you Tomorrow

It took us about one hour to build a good search engine, perfectly adapted to our needs. It is light, fast and
efficient. It returns pertinent results. Would you want to integrate an external library to do the same job
without any possibility to tweak it?

If not, you are probably getting to think the symfony way. If you understood this tutorial, you can probably
add to the search engine the indexing of answers to a question. Questions and suggestions are welcome in the
askeet forum. And most of all, don't create new questions on askeet if a similar question has already been
asked: Now there is a search engine, you have no excuse!

symfony advent calendar

See you Tomorrow 182/202

http://www.php.net/array
http://www.php.net/count
http://www.php.net/count
http://www.php.net/count
http://www.php.net/echo
http://svn.askeet.com/tags/release_day_21/
http://www.symfony-project.com/forum/index.php/f/8/
http://www.askeet.com

symfony advent calendar day twenty-two: Transfer
to production

Previously on symfony

Yesterday, we added a back-office to askeet. So everything is ready for the application to actually run and be
released on the Internet (by the way, it is already online, try browsing to www.askeet.com if you didn't do it
already). This is the perfect moment to focus on the techniques involved in the synchronization of two servers,
since you developed askeet on your computer and will probably host it in another server, connected to the
Internet.

Synchronization

Good practices

There are a lot of ways to synchronize two environments for a website. The basic file transfers can be
achieved by an FTP connection, but there are two major drawbacks to this solution. First, it is not secure, the
data stream transmits in the clear over the Internet and can be intercepted. Second, sending the root project
directory by FTP is fine for the first transfer, but when you have to upload an update of your application,
where only a few files changed, this is not a good and fast way to do it. Either you transfer the whole project
again which, can be long or you browse to the directories where you know that some files changed, and
transfer only the ones with different modification dates. That's a long job, and it is prone to error. In addition,
the website can be unavailable or buggy during the time of the transfer.

The solution that is supported by symfony is rsync synchronization through a SSH layer.

Rsync is a command line utility that provides fast incremental file transfer, and it's open source. By
'incremental', it means that only the modified data will be transferred. If a file didn't change, it won't be sent to
the host. If a file changed only partially, only the differential will be sent. The major advantages is that rsync
synchronizations transfer only a little data and are very fast.

Symfony adds SSH on top of rsync to secure the data transfer. More and more commercial hosts support an
SSH tunnel to secure file uploads on their servers, and that's a good practice that symfony encourages.

For notes on installing rsync and SSH on Linux, read the instructions in the related websites. For Windows
users, an open-source alternative called cwRsync exists, or you can try to install the binaries by hand
(instructions can be found here). Of course, to be able to setup an SSH tunnel between an integration server
and a host server, the SSH service has to be installed and running on both computers.

The symfony sync command

Doing a rsync over SSH requires several commands, and synchronization can occur a lot of times in the life of
an application. Fortunately, symfony automates this process with just one command:

$ symfony sync production

symfony advent calendar

symfony advent calendar day twenty-two: Transfer to production 183/202

http://www.askeet.com
http://en.wikipedia.org/wiki/Ftp
http://samba.anu.edu.au/rsync/
http://en.wikipedia.org/wiki/Secure_Shell
http://www.itefix.no/phpws/index.php?module=pagemaster&PAGE_user_op=view_page&PAGE_id=6&MMN_position=23:23
http://optics.ph.unimelb.edu.au/help/rsync/rsync_pc1.html

This command, called from the root directory of a symfony project, launches the synchronization of the
project code with the production hosted server. The connection details of this server are to be written in
the project properties.ini, found in askeet/config/:

name=askeet

[production]
 host=myaskeetprodserver.com
 port=22
 user=myuser
 dir=/home/myaccount/askeet/

The connection settings will be used by the SSH client call enclosed in the symfony sync command line.

If you just call symfony sync like mentioned above, the rsync utility will run in dry mode by default
(--dry-run), i. e. it will show you which files have to be synchronized but without actually synchronizing
them. If you want the synchronization to be done, you have to mention it explicitly:

$ symfony sync production go

Ignoring irrelevant files

If you synchronize your symfony project with a production host, there are a few files and directories that
should not be transferred:

All the .svn directories and their content: They contain source version control information, only
necessary for development and integration

•

askeet/web/fronted_dev.php: The web front controller for the development environment
must not be available to the final users. The debugging and logging tools available when using the
application through this front controller slow down the application, and give information about the
core variables of your actions. It is something to keep off of the host server.

•

The cache/ and log/ directories of a project must not be erased in the host server each time you do
a synchronization. These directories must be ignored as well. If you have a stats/ directory, it
should probably be treated the same.

•

The files uploaded by users: one of the good practices of symfony projects is to store the uploaded
files in the web/uploads/ directory. This allows us to exclude all these files by pointing to only
one directory.

•

To exclude files from rsync synchronizations, open and edit the rsync_exclude.txt file under the
askeet/config/ directory. Each line can contain either a file, a directory, or a pattern:

.svn
web/frontend_dev.php
cache
log
stats
web/uploads

Thanks to the symfony file structure, you don't have too many files or directories to exclude manually from
the synchronization. If you want to learn more about the way the files are organized in a symfony project, read

symfony advent calendar

Synchronization 184/202

the file structure chapter of the symfony book.

Note: The cache/ and log/ directories must not be synchronized with the development
server, but they must at least exist in the production server. Create them by hand if the askeet
project tree structure doesn't contain them.

Production server configuration

For your project to work in the production server, the symfony framework has to be installed in the host.

Installing symfony in a production server

There are several ways to install symfony on a server, but they are not all adapted to a production
environment. For instance, doing a PEAR install requires administrator rights on directories that might not be
open to you if you share a web server.

Based on the principle that you will probably host several projects using symfony on the production web
server, the recommended symfony installation is to uncompress the archive of the framework in a specific
directory. Only the lib/ and data/ directories are necessary in a production server, so you can get rid of
the other files (bin/, doc/, test/ and the files from the root directory).

You should end up with a file structure looking like:

/home/myaccount/
 symfony/
 lib/
 data/
 askeet/
 apps/
 frontend/
 batch/
 cache/
 config/
 data/
 doc/
 lib/
 log/
 test/
 web/

For the askeet project to use the symfony classes, you have to set up two symbolic links between the
application lib/symfony and data/symfony, and the related directories in the symfony installation:

$ cd /home/myaccount/askeet
$ ln -sf /home/myaccount/symfony/lib lib/symfony
$ ln -sf /home/myaccount/symfony/data data/symfony

Alternatively, if you don't have command line access, the files of the framework can be copied directly into
the project lib/ and data/ directories:

copy /home/myaccount/symfony/lib/* into /home/myaccount/askeet/lib/symfony

symfony advent calendar

Production server configuration 185/202

http://www.symfony-project.com/content/book/page/file_structure.html

copy /home/myaccount/symfony/data/* into /home/myaccount/askeet/data/symfony

Beware that in this case, each time you update the framework, you have to do it in all your projects.

For more information, all the possible ways to install symfony are described in the installation chapter of the
symfony book.

Access to the symfony commands in production

While developing, you took the good habit of using:

$ symfony clear-cache

...each time you change the configuration or the object model of the project. When you upload a new version
of your project in production, the cache also needs to be cleared if you want the application to work. You can
easily do it by deleting the full content of the askeet/cache/ directory (by ftp or with a ssh console).
Alternatively, you can have the power of the symfony command line at the price of a slightly longer
installation.

To use the command line, you need to install the pake utility. Pake is a PHP tool similar to the make
command. It automates some administration tasks according to a specific configuration file called
pakefile.php. The symfony command line uses the pake utility, and each time you type symfony, you
actually call pake with a special pakefile.php located in the symfony/bin/ directory (find more
about pake in symfony in the project creation chapter of the symfony book). If you install symfony via PEAR,
pake is installed as a requirement, so you usually don't see it at all and don't need to bother about what comes
next. But if you do a manual installation, you have to uncompress the pake directory (get it from your
symfony pear installation or download it from the pake website) into your directory in the production server.
Just like for the symfony libs, you also have to add a symlink in order to enable symfony to use pake:

$ ln -sf /home/myaccount/pake/lib lib/pake

You should end up with something like this:

/home/myaccount/
 pake/
 lib/
 symfony/
 lib/
 data/
 askeet/
 apps/
 frontend/
 batch/
 cache/
 config/
 data/
 symfony/ -> /home/myaccount/symfony/data
 doc/
 lib/
 symfony/ -> /home/myaccount/symfony/lib
 pake -> /home/myaccount/pake/data
 log/

symfony advent calendar

Production server configuration 186/202

http://www.symfony-project.com/content/book/page/installation.html
http://www.pake-project.org
http://www.symfony-project.com/content/book/page/project_creation.html
http://www.pake-project.org/download.html

 test/
 web/

To call the symfony command to do a clear-cache, you need to do:

$ cd /home/myaccount/askeet/
$ php lib/pake/bin/pake.php -f lib/symfony/data/symfony/bin/pakefile.php clear-cache

Alternatively, you can create a file called symfony in the home/myaccount/askeet/ with:

#!/bin/sh

php lib/pake/bin/pake.php -f lib/symfony/data/symfony/bin/pakefile.php $@

Then, all you need to do in order to clear the cache is that good old

$ symfony clear-cache

Web command

If you want to have the power of the pake utility but without command line access, you can also create a web
access for the clear-cache command.

For instance, you could save the following webpake.php in your /home/myaccount/askeet/web/
directory:

<?php

// as we are in the web/ dir, we need to go up one level to get to the project root
chdir(dirname(__FILE__).DIRECTORY_SEPARATOR.'..');

include_once('/lib/symfony/pake/bin/pake.php');

$pake = pakeApp::get_instance();
try
{

$ret = $pake->run('/data/symfony/bin/pakefile.php', 'clear-cache');
}
catch (pakeException $e)
{

print "ERROR: ".$e->getMessage();
}

?>

Then, clearing the cache could be done by navigating to:

http://myaskeetprodserver.com/webpake.php

Note: Beware that by letting web access to administration tools, you can compromise the
security of your website.

symfony advent calendar

Production server configuration 187/202

http://www.php.net/chdir
http://www.php.net/dirname
http://www.php.net/print

Upgrading your application

There will be times in the life of your project when you need to switch between two versions of an
application. It can be in order to correct bugs, or to upload new features. You can also be faced with the
problem of switching between two versions of the database. If you follow a few good practices, these actions
will prove easy and harmless.

Show unavailability notice

Between the moment when you start the data transfer and the moment you clear the cache (if you modify the
configuration or the data model), there are sometimes more than a few seconds of delay. You must plan to
display an unavailability notice for users trying to browse the site at that very moment.

In the application settings.yml, define the unavailable_module and unavailable_action
settings:

all:
 .settings:
 unavailable_module: content
 unavailable_action: unavailable

Create an empty content/unavailable action and a unavailableSuccess.php template:

// askeet/apps/frontend/modules/content/actions/actions.class.php
public function executeUnavailable()
{

$this->setTitle('askeet! » maintenance');
}

// askeet/apps/frontend/modules/content/templates/unavailableSuccess.php
<h1>Askeet: Site maintenance</h1>

<p>The askeet website is currently being updated.</p>

<p>Please try again in a few minutes.</p>

<p><i>The askeet team</i></p>

Now each time that you want to make your application unavailable, just change the available setting:

all:

 .settings:

 available: off

Don't forget that for a configuration change to be taken into account in production, you need to clear the
cache.

Note: The fact that the whole application can be turned off with only a single parameter is
possible because symfony applications use a single entry point, the front web controller. You

symfony advent calendar

Upgrading your application 188/202

will find more information about it in the controller page of the symfony book.

Use two versions of your application

A good way to avoid unavailability is to have the project root folder configured as a symlink. For instance,
imagine that you are currently using the version 123 of your application, and that you want to switch to the
version 134. If your web server root is set to /home/myaccount/askeet/web/ and that the production
folder looks like that:

/home/myaccount/
 pake/
 lib/
 symfony/
 lib/
 data/
 askeet/ -> /home/production/askeet.123/
 askeet.123/
 askeet.134/

Then you can instantly switch between the two versions by changing the symlink:

$ ln -sf /home/myaccount/askeet/ /home/myaccount/askeet.134/

The users will see no interruption, and yet all the files used after the change of the symlink will be the ones of
the new release. If, in addition, you emptied the cache/ folder of your release 134, you don't even need to
launch a clear-cache after switching applications.

Switching databases

You can extrapolate that technique to switching databases. Remember that the address of the database used by
your application is defined in the databases.yml configuration file. If you create a copy of the database
with a new name, say askeet.134, you just need to write in the
askeet.134/apps/frontend/config/databases.yml:

all:
 propel:
 class: sfPropelDatabase
 param:
 phptype: mysql
 hostspec: localhost
 database: askeet.134
 username: myuser
 password: mypassword
 compat_assoc_lower: true
 compat_rtrim_string: true

As the databases.yml will be switched as the same time as the application itself, your askeet will
instantly start querying the new database.

This technique is especially useful if your application has a big traffic and if you can't afford any service
interruption.

symfony advent calendar

Upgrading your application 189/202

http://www.symfony-project.com/content/book/page/controller.html

See you Tomorrow

Synchronization is often a big issue for high traffic websites, but thanks to the file structure of the symfony
projects, it should not create any problem for askeet.

Tomorrow, we will talk about the way to adapt askeet to other languages. The patient speakers call it
internationalization, the others find it more convenient to talk about i18n. Symfony has built-in support for
multilingual sites, so that should not be a big deal.

You can still post your questions and suggestions in the askeet forum. And did you try to ask one in the brand
new askeet website?

symfony advent calendar

See you Tomorrow 190/202

http://www.symfony-project.com/forum/index.php/f/8/
http://www.askeet.com

symfony advent calendar day twenty-three:
Internationalization

Previously on symfony

Now that you learned how to transfer a symfony application to a production host, the askeet application can
run anywhere. But what if someone decided to use it in a non-English speaking country like, say, France?

Askeet being an open-source project, we hope that people from all over the world will use it shortly. Not only
does that mean that all the files of the project have to be encoded in utf-8, the application also has to propose a
multilingual interface and content localization.

Think about the multinational companies that are going to install askeet on their Intranet to have a knowledge
management base. They will definitely require that users can switch interface language or content rather than
install one askeet per language... Fortunately, the choices made during the eighteenth day to implement
universes will ease our task a lot, and symfony has native support for internationalized interfaces.

Localization

What if the call to an address like:

http://fr.askeet.com/

...displayed only the French questions? Well, this is quite easy, because since the eighteenth day, such an URI
is understood as a universe.

Content

Creating a question in a language universe will have it tagged automatically with the language tag (here: 'fr').
And, if you browse the 'fr' universe, only the questions with the 'fr' tag will appear.

So the universe filter already takes care of content localization. That was an easy move.

Look and feel

The universes can have their own stylesheet. This means that the look and feel of a localized askeet can be
easily adapted as well, with the same mechanism. Next, please.

Language-dependent functions

The database indexing system built during the twenty-first day relies on a stemming algorithm which is
language-dependant. In a localized version, it has to be adapted.

For now, there is no available stemming library for other languages than English in PHP, but what if there was

symfony advent calendar

symfony advent calendar day twenty-three: Internationalization 191/202

http://en.wikipedia.org/wiki/UTF-8
http://www.symfony-project.com/askeet/22

one, or what if someone decided to port one of the Perl stemming libraries to PHP?

Then, in the myTools::stemPhrase() method, we should call a factory method instead of a simple
PorterStemmer (left as an exercise for now).

Database content

Imagine an international website proposing a list of hotels around the world. Each hotel is shown with a text
description of the rooms, the service and the opening hours. There are thousands of hotels, so this content is to
be stored in a database. The problem is that there must be as many versions of the descriptions as there are
translations of the site.

Symfony provides a way to structure data in order to handle such cases. As for the example above, there
would be a Hotel class for the fares, address and not-to-be-translated content, and a HotelI18n class for
the localized content. As the Propel accessors abstract this separation, even if the description was located
in the HotelI18n table, you would still access it with a simple:

$description = $hotel->getDescription();

To understand how this works, refer to the i18n chapter of the symfony book.

Fortunately, the filter system of the askeet universes replaces the need for content adaptation, so we won't use
it here..

Internationalization

As it is a long word, developers often refer to internationalization as 'i18n'. For those who don't know why,
just count the letters in the word 'internationalization', and you will also understand why 'localization' is
referred to as 'l10n'. In web application development, i18n mostly concerns the translation of text content and
the use of local formats for the interface.

Set the culture

A lot of built-in i18n features in symfony are based on a parameter of the user session called the culture. The
culture is the combination of the country and the language of the user, and it determines how the text and
culture-dependant information will be displayed.

When the askeet application recognizes a universe as a localization, it has to set the corresponding culture.
When should a permanent tag be recognized as a localization? We choose to allow only the ones for which the
interface is translated (see below), so the fact that a universe is a localization is determined by the existence of
an XML translation file in the project i18n/ directory.

The universes are discovered in the askeet/apps/frontend/lib/myTagFilter.class.php
filter, so we just need to modify it a little bit:

public function execute ($filterChain)
{
 ...

symfony advent calendar

Localization 192/202

http://search.cpan.org/search?query=stem&mode=all
http://en.wikipedia.org/wiki/Factory_method_pattern
http://www.symfony-project.com/content/book/page/i18n.html
http://en.wikipedia.org/wiki/Internationalization_and_localization

// is there a tag in the hostname?
$request = $this->getContext()->getRequest();
$hostname = $request->getHost();
if (!preg_match($this->getParameter('host_exclude_regex'), $hostname) && $pos = strpos($hostname, '.'))
{
$tag = Tag::normalize(substr($hostname, 0, $pos));

// add a permanent tag constant
 sfConfig::set('app_permanent_tag', $tag);

// add a custom stylesheet
$request->setAttribute('app/tag_filter', $tag, 'helper/asset/auto/stylesheet');

// is the tag a culture?
if (is_readable(sfConfig::get('sf_app_i18n_dir').'/global/messages.'.strtolower($tag).'.xml'))
{
$this->getContext()->getUser()->setCulture(strtolower($tag));

}
else
{
$this->getContext()->getUser()->setCulture('en');

}
}

 ...
}

Note: The language tags that will be recognized are to be coded in two lower-case characters,
as described in the ISO 639-1 norm (for instance fr for French). When dealing with
internationalization, always prefer ISO codes for countries and languages, so that your code
can comply with international standards and be understood by foreign developers.

You will find more information about internationalization and cultures in the i18n chapter of the symfony
book.

Dates, Times, Numbers, Currency, Measurements

The way to display a date in France is not the same as in the US. What an American would write:

December 16, 2005 9:26 PM

...is written by a French

16 dÃ©cembre 2005 21:26

If you remember well, each time we had to display a date in an askeet template, we used the
format_date() helper. This helper formats the date given as parameter according to the user culture. As
the culture is set in the myTagFilter.class.php filter, the date formatting will be done automatically.

symfony advent calendar

Internationalization 193/202

http://www.php.net/preg_match
http://www.php.net/strpos
http://www.php.net/substr
http://www.php.net/is_readable
http://www.php.net/strtolower
http://www.php.net/strtolower
http://www.w3.org/WAI/ER/IG/ert/iso639.htm
http://www.symfony-project.com/content/book/page/i18n.html

This is a another good practice for international projects: always use the i18n helpers when you have to output
a date, a time, a number, a currency or a measurement. Symfony provides helpers for most of them (see the
i18 helpers chapter of the symfony book for more information).

Interface translation

The interface of the askeet project contains text. In a localized version, the text of the interface should be
displayed in the language of the user culture.

To enable interface translation, all the texts of the askeet templates have to be enclosed in a special i18n
helper, __(). In addition, the helper must be declared at the top of the template. For instance, to enable
interface translation in the home page, open the
askeet/apps/frontend/modules/question/templates/listSuccess.php template and
change it to:

<?php use_helper('I18N') ?>

<h1><?php echo __('popular questions') ?></h1>

<?php include_partial('list', array('question_pager' => $question_pager)) ?>

Note: Instead of having to add the i18n helper on top of each template, you can just add it
once to the application settings.yml in askeet/apps/frontend.config/:

all:
 .settings:

 standard_helpers: Partial,Cache,Form,I18N

For each language in which the interface is translated, a messages.xx.xml file must be created in the
askeet/apps/frontend/i18n/ directory, where xx is the language of the translation. This XML file
is a XLIFF dictionary, showing the translated version of the text from the source language (English for
askeet).

For instance, to enable a French translation, you must create a messages.fr.xml with the following
content:

<?xml version="1.0" ?>
<xliff version="1.0">

<file orginal="global" source-language="en_US" datatype="plaintext">
<body>

<trans-unit id="1">
<source>popular questions</source>
<target>questions populaires</target>

symfony advent calendar

Internationalization 194/202

http://www.symfony-project.com/content/book/page/templating_i18n_helpers.html
http://www.php.net/echo
http://www.php.net/array
http://www.xliff.org/

</trans-unit>
</body>

</file>
</xliff>

The syntax of the XLIFF file is explained in detail in the i18N chapter of the symfony book.

Now, the big part of the job is to browse all the templates (and template fragments) to find the text to
translate. Each time you find a sentence, you have to enclose it between <?php echo __(' and ') ?>,
and create a new <trans-unit> tag in the messages.fr.xml file. Fortunately, all the templates in
symfony projects are localized in templates/ directories, so you don't need to browse all the files of your
project.

Note: A translation only makes sense if the translation files contains full sentences. However,
as you sometimes have formatting or variables in the text, you can add a second argument to
the __() helper to do substitution. For instance, to mark the following template text:

There are <?php echo count_logged() ?> persons logged.

...use only one __()) call to avoid splitting the sentence into two parts that can't be
understood on their own:

<?php echo __('There are %1% persons logged', array('%1%' => count_logged())) ?>

Finally, to allow the automatic translation, you have to set the i18n parameter to on in the application
settings.yml:

all:
 .settings:

 i18n: on

Now browse to fr.askeet.com and watch the translated interface:

symfony advent calendar

Internationalization 195/202

http://www.symfony-project.com/content/book/page/i18n.html
http://www.php.net/echo
http://www.php.net/echo
http://www.php.net/array

Automated translation

Some tools exist to automate the task of enclosing source text and creating messages.xx.xml files.
Unfortunately, none will be able to do the enclosing as well as you would do. Only you can determine where
to start and where to end the __() call. Although we don't use them, we provide a link to the websites where
you will find resources about automated translation tools:

The xgettext command from the GNU getText tool provides a way to extract text from PHP code.
It produces a .pot file (list of the terms) that can be declined into a series of .po files (list of the
terms translated in one language).

•

The po2xliff command from the XLIFF tools turns .po files into messages.xx.xml XLIFF
files.

•

For Windows users, the Okapi framework can be a good alternative.•
To edit the translation files, poedit proposes an intuitive interface (this is especially useful since most
of the human translators don't understand either XML or .po files).

•

symfony advent calendar

Internationalization 196/202

http://en.wikipedia.org/wiki/Gettext
http://xliff-tools.freedesktop.org/wiki/Projects/XliffPoTools
http://okapi.sourceforge.net/
http://www.poedit.org/index.php

Don't forget

Once the text from the templates is marked for translation, there is still a close code inspection to be done. As
a matter of fact, text messages can hide in unexpected parts of your application. Make sure you do an
inventory to find the following "hidden" text:

Image folders (images can include text)

If you need to localize images, put them in a sub directory corresponding to their culture, and add the
culture to the image_tag() helper call:

 [php]
getCulture().'/myimage.png') ?>

•

The alternative text for images, the button labels and all the text messages that are parameters of
<?php and ?> instructions.

•

The JavaScript messages can be located in helpers (as in link_to('click', '@rule',
'confirm=Are you sure?')), in JavaScript tags in your templates, or in included .js files

•

All in all, if you don't design an application with i18n in mind from the beginning, there is a high risk that you
will forget some untranslated text somewhere. Our best advice is to think about i18n before starting to
develop, and if you know that your application will probably be translated, keep in mind to use __('') each
time you write text that will be displayed to the end user.

Note: There are some hidden text messages in the validate/ directories of your modules,
that appear when a form is not properly validated. The cool thing is that you don't have to do
a special treatment to these texts if they appear in the XLIFF translation. Symfony will
automatically find the translation in a <trans-unit> node, and use it instead of the
original text of the YAML files.

symfony advent calendar

Internationalization 197/202

See you Tomorrow

Askeet is making its way to be a really useful open-source application. Being an i18n-compatible application,
it becomes available to the non-English speakers (roughly 90% of the world population).

The modified source of the application, including i18n, is available in the SVN repository and can be browsed
directly from the askeet trac. Your comments on the forum are welcome.

And tomorrow is already the last day of the symfony advent calendar series. Don't miss it.

symfony advent calendar

See you Tomorrow 198/202

http://www.askeet.com/
http://svn.askeet.com/tags/release_day_23/
http://trac.askeet.com/trac/browser/tags/release_day_23
http://www.symfony-project.com/forum/index.php/f/8/

symfony advent calendar day twenty-four: What's
next?

Previously on symfony

For twenty-three days, we have been building a web 2.0 application in PHP5 with the symfony framework.
Yesterday was the last step of the askeet development, and it is fully i18n compatible. If you browse to
www.askeet.com, what you will see is the result of roughly 3 days (24 hours) of work with symfony. As you
see it, the application is ready to answer your questions about chocolate, sex, astronomy, or PHP
programming.

But more than that, askeet is an open source project, and what comes next is, hopefully, a long story.

Use it

The askeet website is open to the public. You can advertise it and talk about it to your friends and relatives.
Some of the test contributions will be removed, but most of the existing questions and user accounts will
remain. Askeet is a great tool to find answers - provided that many users visit it. So spread the word.

Opening an account is fast and easy, and requires nothing but a nickname, a password, and an email. It allows
you to declare interest about questions, to ask new questions, and to rate answers. The email address will not
be used for any kind of advertising, ever.

Subscribe to the RSS feeds to keep informed about the latest questions, or about the answers to the questions
you asked.

Askeet can also be a way to make some money, since user profiles can be linked to a Paypal account. If a user
finds your contributions useful, he/she can thank you by granting you a small donation.

All in all, there is no good reason not to use askeet everyday. It would be our great pleasure if you
bookmarked the site, visited it regularly, and contributed questions and answers.

Install it

Askeet is more than a website, it is an open-source project. As of today, askeet can already be downloaded
and installed anywhere. Today's version is tagged 1.0, it is free to use, adapt, customize, and integrate in third
party applications.

This is technically possible because askeet is based on PHP5 and symfony, and this is legally possible because
askeet is an open-source project on its own, published under the MIT license.

symfony advent calendar

symfony advent calendar day twenty-four: What's next? 199/202

http://www.askeet.com/

Download

To install askeet, you have two options:

Download the 1.0 release as a .tgz archive from the symfony-project website•
Do a checkout from the 1.0 release in the SVN repository into your own askeet folder.•

You will have a symfony project, ready to run as soon as you configure your web server.

Note: The full source can also be browsed online in the askeet trac.

Documentation

The 24 advent calendar tutorials will still be available online in the symfony project website. The full series
can be downloaded as a single PDF file (1.3Mo, almost 200 pages).

If you feel like translating them to a foreign language, you can also download the Markdown version of the
tutorials. We will be delighted to host any foreign translations of the askeet tutorials on our website. The
symfony site uses a Markdown converter which does the formatting, media inclusion and syntax coloring. So
just send us a translated Markdown version, calling the same media, encoded in utf-8, and we will publish it.

Note: Before starting a translation, please write a post in the askeet forum so that two people
don't start the translation at the same time. And please send us the chapters one by one as you
translate them, so that the content can be made available sooner.

File structure

After uncompressing the askeet project archive, you will obtain a list of directories which are the classic file
tree structure of a symfony project. It is explained in detail in the file structure chapter of the symfony book.

At the time of the 1.0 release, the askeet project contains one application (called 'frontend') and 11
modules:

modules/
 administrator
 answer
 api
 content
 feed
 mail
 moderator
 question
 sidebar
 tag
 user

symfony advent calendar

Install it 200/202

http://www.symfony-project.com/downloads/askeet_release_1_0.tgz
http://svn.askeet.com/tags/release_1_0/
http://trac.askeet.com/trac/browser/trunk/
http://www.symfony-project.com/askeet
http://www.symfony-project.com/downloads/askeet/askeet.pdf
http://www.symfony-project.com/downloads/askeet/askeet_markdown.tgz
http://www.symfony-project.com/forum/index.php/t/275/
http://www.symfony-project.com/content/book/page/file_structure.html

Data model

Askeet is compatible with MySQL, PostgreSQL, Oracle, MSSQL, and all database for which a Creole driver
exists. Here is the data model of the askeet application as of release 1.0:

You can find a SQL query that will add these tables to any existing database in
askeet/data/sql/schema/sql.

There is a set of test data in askeet/data/fixtures/. If you want to use it to populate your database,
call:

$ php batch/load_data.php

...from the root directory of the project.

Contribute to it

The askeet application is a living open-source project. As such, we hope that it will continue to improve, but
we need your help for that.

Askeet was developed by Fabien Potencier, who is also the lead developer of the symfony project. As the
framework already represents an important amount of work, contributions from askeet enthusiasts are needed
to make the project live. And there is much to do! If you are a developer interested in contributing to askeet,
have a look at the following to-do list:

Additional features:•

symfony advent calendar

Install it 201/202

http://creole.phpdb.org/wiki/
mailto:fabien.potencier@symfony-project.com

Alternative site designs to propose more than one presentation. This is mostly a graphical
design and CSS coding job.

♦

User-contributed Captchas, under the shape of a simple question (like "how many fingers in
one hand?"), to avoid automatic spam on question contributions.

♦

Preview of questions before publication to avoid big typos♦
Confirmation of user subscription by email (optional)♦
Auto login (with a cookie)♦
RSS Feed of reports for Moderators♦
Ajax Pagination of the contributions/interests in the User profile page♦
Popular algorithm so that the questions of the front page can change over the time♦
...♦

Project strengthening:
Unit tests♦
Code documentation in PHP doc format♦
Installation manual♦

•

In addition, there are or will be bugs to detect, track and fix.

For enhancements and bugs, please use the askeet ticketing system. You can keep track of all the askeet
changes by consulting the project timeline regularly.

All contributions are welcome. Regular contributors with a good understanding of the project will quickly be
granted a right to commit to the SVN repository.

Finally, if you want to discuss about askeet, you have the choice between the askeet forum section in the
symfony project website, or a dedicated wiki at trac.askeet.com/trac/wiki.

Acknowledgements

Fabien Potencier (lead developer of askeet and symfony)

FranÃ§ois Zaninotto (writer of the tutorials) would like to thank John Christopher for his great help on
rereading each of the tutorials to put them in good English, Bruno Klein for his work on the askeet design, and
his wife for the incredible patience and tolerance she showed during 24 days...

See you soon

That's about it. It's been a pleasure developing and writing this for you, we hope that askeet will live long and
that lots of people will start using symfony for their web projects.

Merry Christmas to you all.

symfony advent calendar

Contribute to it 202/202

http://trac.askeet.com/trac/report/1
http://trac.askeet.com/trac/timeline
http://www.symfony-project.com/forum/index.php/f/8/
http://trac.askeet.com/trac/wiki
mailto:fabien.potencier@symfony-project.com
mailto:francois.zaninotto@symfony-project.com
mailto:john.christopher@symfony-project.com

	Table of Contents
	symfony advent calendar day one: starting up a project
	The challenge
	The project
	What for today
	Symfony installation
	Project Setup
	Web service setup
	Subversion
	See you Tomorrow

	symfony advent calendar day two: setting up a data model
	Previously on symfony
	The project unveiled
	Where to start?
	Data Model
	The database
	Test data access via a CRUD
	See you Tomorrow

	symfony advent calendar day three: dive into the MVC architecture
	Previously on symfony
	The MVC model
	Change the layout
	A few words about environments
	Redefine the default homepage
	Define test data
	Create a batch to populate the database
	Accessing the data in the model
	Modify the question/list template
	Cleanup
	See you Tomorrow

	symfony advent calendar day four: refactoring
	Previously on symfony
	Show the answers to a question
	Modify the model, part I
	Don't repeat yourself
	Modify the model, part II
	Same for the answers
	Routing
	See you Tomorrow

	symfony advent calendar day five: forms and pager
	Previously on symfony
	Login form
	Question pager
	Refactoring
	See you Tomorrow

	symfony advent calendar day six: security and form validation
	Previously on symfony
	Login form validation
	Authenticate a user
	Restrict access
	How about a bit of refactoring?
	See you Tomorrow

	symfony advent calendar day seven: model and view manipulation
	Previously on symfony
	Prefactoring
	List of the recent questions
	List of the recent answers
	User profile
	Add a navigation bar
	A little more view configuration
	Look at what we have done
	See you Tomorrow

	symfony advent calendar day eight: AJAX interactions
	Previously on symfony
	Add an indicator in the layout
	Add an AJAX interaction to declare interest
	Add an inline 'sign-in' form
	See you Tomorrow

	symfony advent calendar day nine: local improvements
	Previously on symfony
	Allow rich text formatting on questions and answers
	Test Markdown text
	Hide all ids
	Routing
	See you Tomorrow

	symfony advent calendar day ten: Alter data with Ajax forms
	Previously on symfony
	Add a new question
	Handle the form submission
	Add a new answer
	See you Tomorrow

	symfony advent calendar day eleven: syndication feed
	Previously on symfony
	Popular questions feed
	The magic
	Interface improvements
	See you Tomorrow

	symfony advent calendar day twelve: Emails
	Previously on symfony
	Password recovery
	Send an email
	See you Tomorrow

	symfony advent calendar day thirteen: Tags
	Previously on symfony
	The QuestionTag class
	Display the tags of a question
	Display a short list of popular tags for a question
	Display the list of questions tagged with a word
	See you Tomorrow

	symfony advent calendar day fourteen: Tags, part II
	Previously on symfony
	Add tags to a question
	Display the tag bubble
	See you Tomorrow

	symfony advent calendar day fifteen: Unit tests
	Previously on symfony
	Simple test
	Unit tests in a symfony project
	Simulating a web browsing session
	A few words about environments
	See you Tomorrow

	symfony advent calendar day sixteen: Lazy day
	See you Tomorrow

	symfony advent calendar day seventeen: API
	Previously on symfony
	The API
	HTTP Authentication
	API response
	Integrating an external API
	Paypal donation
	See you Tomorrow

	symfony advent calendar day eighteen: Filters
	Previously on symfony
	Configurable feature
	Create a filter
	Get a permanent tag from the domain name
	Model modifications
	Server configuration
	See you Tomorrow

	symfony advent calendar day nineteen: Performance and cache
	Previously on symfony
	Load testing tools
	Improve performances with the cache
	See you Tomorrow

	symfony advent calendar day twenty: Administration and moderation
	Previously on symfony
	The expected result: what the client says
	Backend vs. enhanced frontend
	The functionality: what the developers understand
	Implementation
	See you Tomorrow

	symfony advent calendar day twenty-one: Search engine
	Previously on symfony
	How to build a search engine?
	Word index
	The search function
	See you Tomorrow

	symfony advent calendar day twenty-two: Transfer to production
	Previously on symfony
	Synchronization
	Production server configuration
	Upgrading your application
	See you Tomorrow

	symfony advent calendar day twenty-three: Internationalization
	Previously on symfony
	Localization
	Internationalization
	See you Tomorrow

	symfony advent calendar day twenty-four: What's next?
	Previously on symfony
	Use it
	Install it
	Contribute to it
	Acknowledgements
	See you soon

